Automatisation YouTube avec n8n : recherche et gestion de vidéos
- Ce workflow n8n a pour objectif d'automatiser la recherche et la gestion de vidéos sur YouTube, facilitant ainsi la collecte et l'organisation de données vidéo pour les entreprises et les créateurs de contenu. Dans un contexte où la vidéo joue un rôle central dans la stratégie marketing, ce workflow permet de récupérer des informations pertinentes sur les vidéos, d'analyser les données et de les stocker dans une base de données PostgreSQL. Cela s'avère particulièrement utile pour les équipes marketing, les agences de communication et les créateurs de contenu qui souhaitent optimiser leur présence sur YouTube.
- Le déroulé du workflow commence par un déclencheur manuel, permettant à l'utilisateur de lancer le processus à tout moment. Ensuite, le workflow utilise le nœud 'get_videos' pour récupérer les vidéos de YouTube selon des filtres définis. Les vidéos sont ensuite traitées en plusieurs étapes, incluant la suppression des vidéos courtes avec le nœud 'remove_shorts', et la structuration des données à l'aide de nœuds de code personnalisés. Les données sont ensuite insérées dans une base de données PostgreSQL, où les utilisateurs peuvent facilement les consulter et les analyser. Des vérifications sont effectuées pour s'assurer que les données ne sont pas déjà présentes, ce qui évite les doublons.
- En intégrant ce workflow, les entreprises peuvent gagner un temps précieux dans la gestion de leur contenu vidéo, tout en améliorant leur efficacité opérationnelle. L'automatisation n8n permet non seulement de réduire les erreurs manuelles, mais aussi d'assurer une mise à jour continue des données, offrant ainsi une valeur ajoutée significative aux équipes marketing et aux créateurs de contenu.
Workflow n8n YouTube, base de données, PostgreSQL : vue d'ensemble
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Workflow n8n YouTube, base de données, PostgreSQL : détail des nœuds
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"id": "Zrd98BnbmN1Px9an",
"meta": {
"instanceId": "edc0464b1050024ebda3e16fceea795e4fdf67b1f61187c4f2f3a72397278df0",
"templateCredsSetupCompleted": true
},
"name": "Youtube Searcher",
"tags": [],
"nodes": [
{
"id": "5cb8757a-d8f0-49fa-803d-7f04b514f9f8",
"name": "Loop Over Items",
"type": "n8n-nodes-base.splitInBatches",
"position": [
80,
220
],
"parameters": {
"options": {}
},
"typeVersion": 3
},
{
"id": "28964bd5-dc53-4dfa-bbb1-4eb80b952063",
"name": "find_video_data1",
"type": "n8n-nodes-base.httpRequest",
"position": [
1440,
320
],
"parameters": {
"url": "https://www.googleapis.com/youtube/v3/videos?",
"options": {},
"sendQuery": true,
"queryParameters": {
"parameters": [
{
"name": "key",
"value": "={{ $env[\"GOOGLE_API_KEY\"] }}"
},
{
"name": "id",
"value": "={{ $json.id.videoId }}"
},
{
"name": "part",
"value": "contentDetails, statistics"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "5e8b9441-4b91-4460-a9ac-4a0a02aa57ad",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"disabled": true,
"position": [
-180,
220
],
"parameters": {},
"typeVersion": 1
},
{
"id": "793ef651-ea56-41bc-a0a9-feeaddf999c0",
"name": "Execute Workflow Trigger",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
-160,
-180
],
"parameters": {},
"typeVersion": 1
},
{
"id": "64e331ff-2cda-4ba0-94f9-03fa6c3d6590",
"name": "fetch_last_registered",
"type": "n8n-nodes-base.postgres",
"position": [
360,
360
],
"parameters": {
"query": "SELECT MAX(publish_time) AS latest_publish_time\nFROM video_statistics\nWHERE channel_id = '{{ $json.id }}';",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"postgres": {
"id": "KQiQIZTArTBSNJH7",
"name": "Postgres account"
}
},
"typeVersion": 2.5
},
{
"id": "fb0a8208-c920-4344-8816-ef6509f07abc",
"name": "get_videos",
"type": "n8n-nodes-base.youTube",
"onError": "continueRegularOutput",
"position": [
640,
360
],
"parameters": {
"limit": 50,
"filters": {
"channelId": "={{ $('Loop Over Items').item.json.id }}",
"regionCode": "US",
"publishedAfter": "={{ $json.latest_publish_time ? new Date(new Date($json.latest_publish_time).getTime() + 60 * 60 * 1000).toISOString() : new Date(Date.now() - 3 * 30 * 24 * 60 * 60 * 1000).toISOString() }}"
},
"options": {
"order": "relevance",
"safeSearch": "moderate"
},
"resource": "video"
},
"credentials": {
"youTubeOAuth2Api": {
"id": "o3VUdoHEk6VhB1lq",
"name": "YouTube account"
}
},
"typeVersion": 1,
"alwaysOutputData": true
},
{
"id": "ea358d3c-9a83-49c9-a02e-745cf5b29097",
"name": "if_is_empty",
"type": "n8n-nodes-base.if",
"onError": "continueRegularOutput",
"position": [
940,
540
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "or",
"conditions": [
{
"id": "7591deae-4626-4b2e-af26-d02042573a13",
"operator": {
"type": "object",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $input.item.json }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "142e5c5e-f488-4667-a759-ef4494f2a194",
"name": "Postgres",
"type": "n8n-nodes-base.postgres",
"position": [
80,
-180
],
"parameters": {
"query": "WITH RankedVideos AS (\n SELECT \n channel_id,\n id,\n view_count,\n like_count,\n comment_count,\n publish_time,\n ROW_NUMBER() OVER (PARTITION BY channel_id ORDER BY view_count DESC) AS rank_desc,\n ROW_NUMBER() OVER (PARTITION BY channel_id ORDER BY view_count ASC) AS rank_asc\n FROM video_statistics\n),\nFilteredVideos AS (\n SELECT \n channel_id,\n id,\n view_count,\n like_count,\n comment_count,\n publish_time\n FROM RankedVideos\n WHERE NOT (\n rank_desc <= 2 OR rank_asc <= 2 -- Exclude top 2 and bottom 2 videos\n )\n OR (\n (SELECT COUNT(*) FROM video_statistics WHERE video_statistics.channel_id = RankedVideos.channel_id) <= 10 -- Include all videos if 10 or fewer exist\n )\n),\nChannelStats AS (\n SELECT \n channel_id,\n ROUND(AVG(view_count)::NUMERIC, 0) AS average_views -- Round to 0 decimal places\n FROM FilteredVideos\n GROUP BY channel_id\n)\nSELECT \n v.channel_id,\n c.average_views,\n JSON_AGG(\n JSON_BUILD_OBJECT(\n 'id', v.id,\n 'view_count', v.view_count,\n 'like_count', v.like_count,\n 'comment_count', v.comment_count,\n 'publish_time', v.publish_time\n )\n ) AS channel_videos\nFROM video_statistics v\nLEFT JOIN ChannelStats c\nON v.channel_id = c.channel_id\nGROUP BY v.channel_id, c.average_views;\n",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"postgres": {
"id": "KQiQIZTArTBSNJH7",
"name": "Postgres account"
}
},
"typeVersion": 2.5
},
{
"id": "a542b55e-bab4-476d-8333-692f5b3a5dcb",
"name": "insert_items",
"type": "n8n-nodes-base.postgres",
"position": [
2980,
320
],
"parameters": {
"query": "{{$json.query}}",
"options": {
"queryReplacement": "={{$json.parameters}}"
},
"operation": "executeQuery"
},
"credentials": {
"postgres": {
"id": "KQiQIZTArTBSNJH7",
"name": "Postgres account"
}
},
"typeVersion": 2.5
},
{
"id": "6680728a-805e-4a45-8720-56726ad9e582",
"name": "create_table",
"type": "n8n-nodes-base.postgres",
"position": [
620,
-180
],
"parameters": {
"query": "CREATE TABLE video_statistics (\n id VARCHAR(255) PRIMARY KEY, -- Unique identifier for the video\n view_count INT NOT NULL, -- Number of views\n like_count INT NOT NULL, -- Number of likes\n comment_count INT NOT NULL, -- Number of comments\n publish_time TIMESTAMP NOT NULL, -- Timestamp of publishing\n channel_id VARCHAR(255) NOT NULL -- Channel ID\n);\n",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"postgres": {
"id": "KQiQIZTArTBSNJH7",
"name": "Postgres account"
}
},
"typeVersion": 2.5
},
{
"id": "4e345df5-bdd6-4a93-9096-367bd911dbd4",
"name": "remove_shorts",
"type": "n8n-nodes-base.code",
"position": [
1720,
320
],
"parameters": {
"jsCode": "const input = $input.all();\n\nconst iso8601ToSeconds = iso8601 => {\n const match = iso8601 ? iso8601.match(/PT(?:(\\d+)H)?(?:(\\d+)M)?(?:(\\d+)S)?/) : null;\n if (!match) {\n console.warn(`Invalid ISO8601 duration: ${iso8601}`);\n return 0; \n }\n const hours = parseInt(match[1] || 0, 10);\n const minutes = parseInt(match[2] || 0, 10);\n const seconds = parseInt(match[3] || 0, 10);\n return hours * 3600 + minutes * 60 + seconds;\n};\n\nconst filteredResponses = input.filter(response => {\n if (response.json && response.json.items) {\n const validItems = response.json.items.filter(item => {\n const duration = item.contentDetails?.duration;\n if (!duration) {\n console.warn(`Missing duration for item: ${JSON.stringify(item)}`);\n return false; \n }\n const durationInSeconds = iso8601ToSeconds(duration);\n\n return durationInSeconds > 210;\n });\n\n response.json.items = validItems;\n\n return validItems.length > 0; \n }\n\n return false;\n});\n\nreturn filteredResponses;\n"
},
"typeVersion": 2,
"alwaysOutputData": true
},
{
"id": "aadac7e3-8114-4c43-b0bf-d1a7de7c3e0c",
"name": "create_query",
"type": "n8n-nodes-base.code",
"position": [
2780,
320
],
"parameters": {
"jsCode": "const input = $input.all();\n\nlet tableName = \"video_statistics\"; \n\nconst rows = input;\n\nconst formattedRows = rows.map(elements => {\n const row = elements.json;\n const formattedRow = {\n id: row.id,\n view_count: parseInt(row.viewCount, 10) || 0, \n like_count: parseInt(row.likeCount, 10) || 0,\n comment_count: parseInt(row.commentCount, 10) || 0,\n publish_time: row.publishTime ? new Date(row.publishTime).toISOString() : null,\n channel_id: $('Loop Over Items').first().json.id || \"unknown\"\n };\n return formattedRow;\n});\n\nconst columns = [\"id\", \"view_count\", \"like_count\", \"comment_count\", \"publish_time\", \"channel_id\"];\n\nconst valuePlaceholders = formattedRows.map((_, rowIndex) =>\n `(${columns.map((_, colIndex) => `$${rowIndex * columns.length + colIndex + 1}`).join(\", \")})`\n).join(\", \");\n\nconst insertQuery = `INSERT INTO ${tableName} (${columns.map(col => `\\\"${col}\\\"`).join(\", \")}) VALUES ${valuePlaceholders};`;\n\nconst parameters = formattedRows.flatMap(row => \n columns.map(col => row[col])\n);\n\nreturn [\n {\n query: insertQuery,\n parameters: parameters\n }\n];\n"
},
"typeVersion": 2
},
{
"id": "46376f7c-1ce1-4f8a-8392-7281aacfd1c5",
"name": "structure_data",
"type": "n8n-nodes-base.code",
"position": [
2560,
320
],
"parameters": {
"jsCode": "const input = $input.all(); \n\nconst filteredInput = input.filter(item => item.json.viewCount !== null);\n\nconst updatedInput = filteredInput.map(item => {\n return {\n ...item,\n json: {\n ...item.json,\n likeCount: item.json.likeCount === null ? \"0\" : item.json.likeCount,\n commentCount: item.json.commentCount === null ? \"0\" : item.json.commentCount\n }\n };\n});\n\nreturn updatedInput;\n"
},
"typeVersion": 2
},
{
"id": "f66597ef-1324-45e0-b3e8-bc8a588315e4",
"name": "if_empty",
"type": "n8n-nodes-base.if",
"position": [
2020,
500
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "dacc5370-f54c-4b90-a2aa-65efff196d3b",
"operator": {
"type": "object",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "1176b08f-79bb-4f8f-8c83-25a7c2cee9e7",
"name": "already_populated",
"type": "n8n-nodes-base.set",
"position": [
1200,
600
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "7579fbc3-d702-4c36-b539-11b7db6c07fa",
"name": "report",
"type": "string",
"value": "={{ $('Loop Over Items').item.json.url }} already populated. Latest was: {{ $('fetch_last_registered').item.json.latest_publish_time }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "265b3062-ee60-4de0-8ee0-3973e653aa7d",
"name": "map_data",
"type": "n8n-nodes-base.set",
"position": [
2340,
320
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "1a76e4e8-cd56-4d55-bcbf-ed24708e1464",
"name": "id",
"type": "string",
"value": "={{ $json.items[0].id }}"
},
{
"id": "0b6d93ba-89fb-4781-809f-6c7bd887f9e2",
"name": "viewCount",
"type": "string",
"value": "={{ $json.items[0].statistics.viewCount }}"
},
{
"id": "9526b059-661a-49a2-81d3-3623d677ddd1",
"name": "likeCount",
"type": "string",
"value": "={{ $json.items[0].statistics.likeCount }}"
},
{
"id": "ca4adf8b-d74f-4dda-a96e-0a2ca3e864e3",
"name": "commentCount",
"type": "string",
"value": "={{ $json.items[0].statistics.commentCount }}"
},
{
"id": "8129ff1c-87c6-489b-83f8-88bdbf426b0f",
"name": "=publishTime",
"type": "string",
"value": "={{ $('get_videos').item.json.snippet.publishedAt }}"
},
{
"id": "16fc88dc-4772-4380-873d-2aa9642b31ac",
"name": "channelId",
"type": "string",
"value": "={{ $('if_is_empty').item.json.snippet.channelId }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "173ac548-89be-4e94-a0e3-e90c45489a0c",
"name": "sanitize_data",
"type": "n8n-nodes-base.code",
"position": [
300,
-180
],
"parameters": {
"jsCode": "const now = new Date();\nconst twoWeeksAgo = new Date(now.getTime() - 14 * 24 * 60 * 60 * 1000);\n\nconst bestPerformingVideos = [];\n\n$input.all().forEach(channel => {\n \n const averageViews = parseInt(channel.json.average_views, 10);\n \n channel.json.channel_videos.forEach(video => {\n const publishDate = new Date(video.publish_time);\n const isWithinTwoWeeks = publishDate >= twoWeeksAgo && publishDate <= now;\n const isAboveThreshold = video.view_count >= 2 * averageViews;\n\n \n if (isWithinTwoWeeks && isAboveThreshold) {\n const score = (video.like_count / video.view_count) * 100;\n bestPerformingVideos.push({\n id: video.id,\n videoUrl: `https://www.youtube.com/watch?v=${video.id}`,\n viewCount: video.view_count,\n likeCount: video.like_count,\n score: parseFloat(score.toFixed(2)),\n commentCount: video.comment_count,\n channelId: `https://www.youtube.com/channel/${channel.json.channel_id}` \n });\n }\n });\n});\n\nreturn bestPerformingVideos;\n"
},
"typeVersion": 2,
"alwaysOutputData": true
},
{
"id": "48e729ac-985c-47f5-8895-d2e52581e849",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-260,
140
],
"parameters": {
"color": 7,
"width": 3440,
"height": 720,
"content": "### Save Videos To Database"
},
"typeVersion": 1
},
{
"id": "11c51123-27f7-4de7-9215-49d89679c2f6",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-260,
-260
],
"parameters": {
"color": 6,
"width": 780,
"height": 280,
"content": "### Fetch best performing videos from last 2 weeks"
},
"typeVersion": 1
},
{
"id": "7ef37f94-9283-4b51-a127-98c94542429a",
"name": "see table",
"type": "n8n-nodes-base.postgres",
"position": [
920,
-180
],
"parameters": {
"query": "SELECT * FROM video_statistics;",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"postgres": {
"id": "KQiQIZTArTBSNJH7",
"name": "Postgres account"
}
},
"typeVersion": 2.5
},
{
"id": "e66af542-ea16-4c3c-9f6e-b5401bbd41da",
"name": "drop table",
"type": "n8n-nodes-base.postgres",
"position": [
1200,
-180
],
"parameters": {
"query": "DROP TABLE video_statistics;",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"postgres": {
"id": "KQiQIZTArTBSNJH7",
"name": "Postgres account"
}
},
"typeVersion": 2.5
}
],
"active": false,
"pinData": {
"When clicking ‘Test workflow’": [
{
"json": {
"id": "UCMwVTLZIRRUyyVrkjDpn4pA",
"url": "https://www.youtube.com/@ColeMedin"
}
},
{
"json": {
"id": "UC2ojq-nuP8ceeHqiroeKhBA",
"url": "www.youtube.com/@nateherk"
}
}
]
},
"settings": {
"executionOrder": "v1"
},
"versionId": "8ee4a252-a795-4931-951f-024d1f0d801a",
"connections": {
"Postgres": {
"main": [
[
{
"node": "sanitize_data",
"type": "main",
"index": 0
}
]
]
},
"if_empty": {
"main": [
[
{
"node": "map_data",
"type": "main",
"index": 0
}
],
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"map_data": {
"main": [
[
{
"node": "structure_data",
"type": "main",
"index": 0
}
]
]
},
"get_videos": {
"main": [
[
{
"node": "if_is_empty",
"type": "main",
"index": 0
}
]
]
},
"if_is_empty": {
"main": [
[
{
"node": "find_video_data1",
"type": "main",
"index": 0
}
],
[
{
"node": "already_populated",
"type": "main",
"index": 0
}
]
]
},
"create_query": {
"main": [
[
{
"node": "insert_items",
"type": "main",
"index": 0
}
]
]
},
"insert_items": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"remove_shorts": {
"main": [
[
{
"node": "if_empty",
"type": "main",
"index": 0
}
]
]
},
"structure_data": {
"main": [
[
{
"node": "create_query",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items": {
"main": [
[],
[
{
"node": "fetch_last_registered",
"type": "main",
"index": 0
}
]
]
},
"find_video_data1": {
"main": [
[
{
"node": "remove_shorts",
"type": "main",
"index": 0
}
]
]
},
"already_populated": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"fetch_last_registered": {
"main": [
[
{
"node": "get_videos",
"type": "main",
"index": 0
}
]
]
},
"Execute Workflow Trigger": {
"main": [
[
{
"node": "Postgres",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
}
}
}Workflow n8n YouTube, base de données, PostgreSQL : pour qui est ce workflow ?
Ce workflow s'adresse principalement aux équipes marketing, aux créateurs de contenu et aux agences de communication qui cherchent à automatiser la gestion de leurs vidéos sur YouTube. Il est adapté aux utilisateurs ayant un niveau technique intermédiaire et souhaitant optimiser leur flux de travail.
Workflow n8n YouTube, base de données, PostgreSQL : problème résolu
Ce workflow résout le problème de la gestion manuelle des vidéos sur YouTube, qui peut être chronophage et sujet à des erreurs. En automatisant la recherche et le stockage des données vidéo, il permet aux utilisateurs de gagner du temps et d'améliorer la précision des informations collectées. Les utilisateurs peuvent ainsi se concentrer sur l'analyse et l'optimisation de leur contenu, plutôt que sur des tâches répétitives.
Workflow n8n YouTube, base de données, PostgreSQL : étapes du workflow
Étape 1 : Le workflow est déclenché manuellement par l'utilisateur.
- Étape 1 : Le nœud 'get_videos' récupère les vidéos de YouTube selon les critères définis.
- Étape 2 : Les vidéos sont traitées pour supprimer les vidéos courtes via le nœud 'remove_shorts'.
- Étape 3 : Les données sont structurées avec des nœuds de code pour préparer leur insertion.
- Étape 4 : Les données sont insérées dans une base de données PostgreSQL grâce au nœud 'insert_items'.
- Étape 5 : Des vérifications sont effectuées pour éviter les doublons, assurant ainsi l'intégrité des données.
Workflow n8n YouTube, base de données, PostgreSQL : guide de personnalisation
Pour personnaliser ce workflow, commencez par ajuster les paramètres du nœud 'get_videos' pour définir vos critères de recherche spécifiques sur YouTube. Vous pouvez également modifier le code dans les nœuds de traitement pour adapter la structure des données selon vos besoins. Assurez-vous de configurer correctement la connexion à votre base de données PostgreSQL, notamment l'URL et les identifiants. Enfin, vous pouvez ajouter d'autres nœuds pour intégrer des outils supplémentaires ou automatiser des étapes supplémentaires selon vos objectifs.