Automatisation WooCommerce avec n8n : assistant personnel AI
Ce workflow n8n permet de créer un assistant personnel pour les achats en ligne via WooCommerce, en intégrant des technologies avancées telles qu'OpenAI et RAG. Idéal pour les entreprises de e-commerce, ce système automatise la gestion des requêtes clients en temps réel, offrant une expérience d'achat personnalisée et fluide. Le déclencheur initial est un message reçu dans le chat, qui active une série de traitements pour analyser et répondre aux besoins des utilisateurs.
- Étape 1 : le message est capturé par le noeud 'When chat message received'.
- Étape 2 : les données sont stockées temporairement grâce à 'Window Buffer Memory' pour maintenir le contexte de la conversation.
- Étape 3 : le noeud 'Calculator' permet d'effectuer des calculs nécessaires pour les recommandations de produits.
- Étape 4 : avec 'OpenAI Chat Model', le système génère des réponses adaptées. Les noeuds 'RAG' et 'Qdrant Vector Store' sont utilisés pour gérer les données et améliorer la pertinence des recommandations. Enfin, le noeud 'personal_shopper' interagit avec WooCommerce pour finaliser les achats. Ce workflow offre une valeur ajoutée significative en réduisant le temps de réponse et en augmentant la satisfaction client, tout en optimisant les processus de vente.
Workflow n8n WooCommerce, OpenAI, e-commerce, assistant personnel : vue d'ensemble
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Workflow n8n WooCommerce, OpenAI, e-commerce, assistant personnel : détail des nœuds
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"id": "fqQcmSdoVqnPeGHj",
"meta": {
"instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
"templateCredsSetupCompleted": true
},
"name": "OpenAI Personal Shopper with RAG and WooCommerce",
"tags": [],
"nodes": [
{
"id": "635901e5-4afd-4c81-a63e-52f1b863a025",
"name": "When chat message received",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-200,
280
],
"webhookId": "bd3a878c-50b0-4d92-906f-e768a65c1485",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "d11cd97c-1539-462d-858c-8758cf1a8278",
"name": "Window Buffer Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
620,
580
],
"parameters": {
"sessionKey": "={{ $('Edit Fields').item.json.sessionId }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.3
},
{
"id": "02bb43e4-f26e-4906-8049-c49d3fecd817",
"name": "Calculator",
"type": "@n8n/n8n-nodes-langchain.toolCalculator",
"position": [
760,
580
],
"parameters": {},
"typeVersion": 1
},
{
"id": "ad6058dd-b429-4f3c-b68a-7e3d98beec83",
"name": "Edit Fields",
"type": "n8n-nodes-base.set",
"position": [
20,
280
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "7015c229-f9fe-4c77-b2b9-4ac09a3a3cb1",
"name": "sessionId",
"type": "string",
"value": "={{ $json.sessionId }}"
},
{
"id": "f8fc0044-6a1a-455b-a435-58931a8c4c8e",
"name": "chatInput",
"type": "string",
"value": "={{ $json.chatInput }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "43f7ee25-4529-4558-b5ea-c2a722b0bce5",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
500,
580
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "8b5ec20d-8735-4030-8113-717d578928eb",
"name": "RAG",
"type": "@n8n/n8n-nodes-langchain.toolVectorStore",
"position": [
1000,
580
],
"parameters": {
"name": "informazioni_negozio",
"description": "Informazioni relative al negozio: orari di apertura, indirizzo, contatti, informazioni generali"
},
"typeVersion": 1
},
{
"id": "0fd0f1d6-41df-43d4-9418-0685afad409a",
"name": "Qdrant Vector Store",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
900,
780
],
"parameters": {
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "scarperia",
"cachedResultName": "scarperia"
}
},
"credentials": {
"qdrantApi": {
"id": "iyQ6MQiVaF3VMBmt",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "72084a2e-0e47-4723-a004-585ae8b67ae3",
"name": "Embeddings OpenAI",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
840,
940
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "30d398a3-2331-4a3d-898d-c184779c7ef3",
"name": "OpenAI Chat Model1",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1200,
800
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "e10a8024-51ec-4553-a1fa-dbaa49a4d2c2",
"name": "personal_shopper",
"type": "n8n-nodes-base.wooCommerceTool",
"position": [
880,
580
],
"parameters": {
"options": {
"sku": "={{ $('Information Extractor').item.json.output.SKU }}",
"search": "={{ $('Information Extractor').item.json.output.keyword }}",
"maxPrice": "={{ $('Information Extractor').item.json.output.price_max }}",
"minPrice": "={{ $('Information Extractor').item.json.output.price_min }}",
"stockStatus": "instock"
},
"operation": "getAll"
},
"credentials": {
"wooCommerceApi": {
"id": "d4EQtVORkOCNQZAm",
"name": "WooCommerce (Scarperia)"
}
},
"typeVersion": 1
},
{
"id": "f0c53b0d-7173-4ec9-8fb4-f8f45d9ceedc",
"name": "Information Extractor",
"type": "@n8n/n8n-nodes-langchain.informationExtractor",
"position": [
220,
280
],
"parameters": {
"text": "={{ $json.chatInput }}",
"options": {
"systemPromptTemplate": "You are an intelligent assistant for a shoe and accessories store (mainly bags). Your task is to analyze the input text coming from a chat and determine if the user is looking for a product. If the user is looking for a product, you need to extract the following information:\n1. The keyword (keyword) useful for the search.\n2. Any minimum or maximum prices specified.\n3. An SKU (product code) if mentioned.\n4. The name of the category to search in, if specified.\n\nInstructions:\n1. Identify the intent: Determine if the user is looking for a specific product.\n2. Extract the information:\n- If the user is looking for a product, identify:\n- Set the type \"search\" to true. Otherwise, set it to false\n- The keywords.\n- Any minimum or maximum prices (e.g. \"less than 50 euros\", \"between 30 and 60 euros\").\n- An SKU (e.g. \"ABC123 code\").\n- The category name (e.g. \"t-shirts\", \"jeans\", \"women\", \"men\").\n3. Output format: Return a JSON object with the given structure"
},
"schemaType": "manual",
"inputSchema": "{\n \"search_intent\": true,\n \"search_params\": [\n { \"type\": \"search\", \"value\": \"ture or false\" },\n { \"type\": \"keyword\", \"value\": \"valore_keyword\" },\n { \"type\": \"min_price\", \"value\": \"valore_min_price\" },\n { \"type\": \"max_price\", \"value\": \"valore_max_price\" },\n { \"type\": \"sku\", \"value\": \"valore_sku\" },\n { \"type\": \"category\", \"value\": \"valore_categoria\" }\n ]\n }"
},
"typeVersion": 1
},
{
"id": "8386e554-e2f1-42c8-881f-a06e8099f718",
"name": "OpenAI Chat Model2",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
200,
460
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "4ff30e15-1bf5-4750-a68a-e72f86a4f32c",
"name": "Google Drive2",
"type": "n8n-nodes-base.googleDrive",
"position": [
320,
-440
],
"parameters": {
"filter": {
"driveId": {
"__rl": true,
"mode": "list",
"value": "My Drive",
"cachedResultUrl": "https://drive.google.com/drive/my-drive",
"cachedResultName": "My Drive"
},
"folderId": {
"__rl": true,
"mode": "list",
"value": "1lmnqpLFKS-gXmXT92C5VG0P1XlcoeFOb",
"cachedResultUrl": "https://drive.google.com/drive/folders/1lmnqpLFKS-gXmXT92C5VG0P1XlcoeFOb",
"cachedResultName": "Scarperia Salò - RAG"
}
},
"options": {},
"resource": "fileFolder"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "HEy5EuZkgPZVEa9w",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "b4ca79b2-220b-4290-a33a-596250c8fd2d",
"name": "Google Drive1",
"type": "n8n-nodes-base.googleDrive",
"position": [
520,
-440
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "id",
"value": "={{ $json.id }}"
},
"options": {
"googleFileConversion": {
"conversion": {
"docsToFormat": "text/plain"
}
}
},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "HEy5EuZkgPZVEa9w",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "18f5e068-ad4a-4be7-987c-83ed5791f012",
"name": "Embeddings OpenAI3",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
680,
-260
],
"parameters": {
"options": {}
},
"credentials": {
"openAiApi": {
"id": "CDX6QM4gLYanh0P4",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "43693ee0-a2a3-44d3-86de-4156af84e251",
"name": "Default Data Loader2",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
880,
-220
],
"parameters": {
"options": {},
"dataType": "binary"
},
"typeVersion": 1
},
{
"id": "f0d351e5-faee-49a4-a43c-985785c3d2c8",
"name": "Token Splitter1",
"type": "@n8n/n8n-nodes-langchain.textSplitterTokenSplitter",
"position": [
960,
-60
],
"parameters": {
"chunkSize": 300,
"chunkOverlap": 30
},
"typeVersion": 1
},
{
"id": "ff77338e-4dac-4261-87a1-10a21108f543",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
-200,
-440
],
"parameters": {},
"typeVersion": 1
},
{
"id": "72484893-875a-4e8b-83fc-ca137e812050",
"name": "HTTP Request",
"type": "n8n-nodes-base.httpRequest",
"position": [
40,
-440
],
"parameters": {
"url": "https://QDRANTURL/collections/NAME/points/delete",
"method": "POST",
"options": {},
"jsonBody": "{\n \"filter\": {}\n}",
"sendBody": true,
"sendHeaders": true,
"specifyBody": "json",
"authentication": "genericCredentialType",
"genericAuthType": "httpHeaderAuth",
"headerParameters": {
"parameters": [
{
"name": "Content-Type",
"value": "application/json"
}
]
}
},
"credentials": {
"httpHeaderAuth": {
"id": "qhny6r5ql9wwotpn",
"name": "Qdrant API (Hetzner)"
}
},
"typeVersion": 4.2
},
{
"id": "5837e3ac-e3d1-45b6-bd67-8c3d03bf0a1e",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-20,
-500
],
"parameters": {
"width": 259.7740863787376,
"height": 234.1528239202657,
"content": "Replace the URL and Collection name with your own"
},
"typeVersion": 1
},
{
"id": "79baf424-e647-4a80-a19e-c023ad3b1860",
"name": "Qdrant Vector Store1",
"type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
"position": [
760,
-440
],
"parameters": {
"mode": "insert",
"options": {},
"qdrantCollection": {
"__rl": true,
"mode": "list",
"value": "scarperia",
"cachedResultName": "scarperia"
}
},
"credentials": {
"qdrantApi": {
"id": "iyQ6MQiVaF3VMBmt",
"name": "QdrantApi account"
}
},
"typeVersion": 1
},
{
"id": "17015f50-a3a8-4e62-9816-7e71127c1ea1",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-220,
-640
],
"parameters": {
"color": 3,
"width": 1301.621262458471,
"height": 105.6212624584717,
"content": "## Step 1 \nCreate a collectiopn on your Qdrant instance. Then create a basic RAG system with documents uploaded to Google Drive and embedded in the Qdrant vector database"
},
"typeVersion": 1
},
{
"id": "0ddbf6be-fa2d-4412-8e85-fe108cd6e84d",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
1020,
980.0000000000001
],
"parameters": {
"color": 3,
"width": 1301.621262458471,
"height": 105.6212624584717,
"content": "## Step 1 \nCreate a basic RAG system with documents uploaded to Google Drive and embedded in the Qdrant vector database"
},
"typeVersion": 1
},
{
"id": "3782a22d-b3a7-44ea-ad36-fa4382c9fcfd",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-200,
120
],
"parameters": {
"color": 3,
"width": 1301.621262458471,
"height": 105.6212624584717,
"content": "## Step 2 \nThe Information Extractor tries to understand if the request is related to products and if so, it extracts the useful information to filter the products available on WooCommerce by calling the \"personal_shopper\". If it is a general question, the RAG system is called"
},
"typeVersion": 1
},
{
"id": "d4d1fb16-3f54-4c1a-ab4e-bcf86d897e9d",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
580,
280
],
"parameters": {
"text": "={{ $('When chat message received').item.json.chatInput }}",
"options": {
"systemMessage": "=You are an intelligent assistant for a clothing store. Your task is to analyze the input text from a chat and determine if the user is looking for a product.\n\nBehavior:\n- If the user is looking for a product the \"search\" field of the following JSON is set to true and you must pass the following JSON as input to the \"personal_shopper\" tool to extract:\n\n```json\n{{ JSON.stringify($json.output) }}\n```\n\n- If the user asks questions related to the store such as address or opening hours, you must use the \"RAG\" tool"
},
"promptType": "define"
},
"typeVersion": 1.7
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "47513e11-8e9f-4b7c-b3de-e15cf00a1200",
"connections": {
"RAG": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Calculator": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Edit Fields": {
"main": [
[
{
"node": "Information Extractor",
"type": "main",
"index": 0
}
]
]
},
"HTTP Request": {
"main": [
[
{
"node": "Google Drive2",
"type": "main",
"index": 0
}
]
]
},
"Google Drive1": {
"main": [
[
{
"node": "Qdrant Vector Store1",
"type": "main",
"index": 0
}
]
]
},
"Google Drive2": {
"main": [
[
{
"node": "Google Drive1",
"type": "main",
"index": 0
}
]
]
},
"Token Splitter1": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader2",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"personal_shopper": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Embeddings OpenAI": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Embeddings OpenAI3": {
"ai_embedding": [
[
{
"node": "Qdrant Vector Store1",
"type": "ai_embedding",
"index": 0
}
]
]
},
"OpenAI Chat Model1": {
"ai_languageModel": [
[
{
"node": "RAG",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"OpenAI Chat Model2": {
"ai_languageModel": [
[
{
"node": "Information Extractor",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Qdrant Vector Store": {
"ai_vectorStore": [
[
{
"node": "RAG",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"Default Data Loader2": {
"ai_document": [
[
{
"node": "Qdrant Vector Store1",
"type": "ai_document",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Information Extractor": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "Edit Fields",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "HTTP Request",
"type": "main",
"index": 0
}
]
]
}
}
}Workflow n8n WooCommerce, OpenAI, e-commerce, assistant personnel : pour qui est ce workflow ?
Ce workflow s'adresse aux entreprises de e-commerce cherchant à améliorer leur service client grâce à l'automatisation. Il convient particulièrement aux équipes techniques et marketing souhaitant intégrer des solutions AI avancées dans leur processus de vente.
Workflow n8n WooCommerce, OpenAI, e-commerce, assistant personnel : problème résolu
Ce workflow résout le problème de la lenteur et de l'inefficacité dans le traitement des requêtes clients en ligne. En automatisant les réponses grâce à un assistant AI, il élimine les frustrations liées aux délais d'attente et réduit le risque de perte de ventes. Les utilisateurs bénéficient d'une expérience d'achat personnalisée et rapide, augmentant ainsi les chances de conversion.
Workflow n8n WooCommerce, OpenAI, e-commerce, assistant personnel : étapes du workflow
Étape 1 : Le flux commence par le déclencheur 'When chat message received', qui capte les messages des clients.
- Étape 1 : Les informations sont stockées dans 'Window Buffer Memory' pour conserver le contexte.
- Étape 2 : Le 'Calculator' effectue des calculs nécessaires pour les recommandations.
- Étape 3 : 'OpenAI Chat Model' génère des réponses adaptées aux demandes des utilisateurs.
- Étape 4 : 'RAG' et 'Qdrant Vector Store' gèrent les données pour optimiser les recommandations.
- Étape 5 : Le noeud 'personal_shopper' interagit avec WooCommerce pour finaliser les achats.
- Étape 6 : Le flux se termine par un retour d'information au client, assurant une expérience fluide.
Workflow n8n WooCommerce, OpenAI, e-commerce, assistant personnel : guide de personnalisation
Pour personnaliser ce workflow, commencez par ajuster le noeud 'When chat message received' pour définir les canaux de communication souhaités. Modifiez les paramètres dans 'OpenAI Chat Model' pour adapter le ton et le style des réponses. Vous pouvez également personnaliser les options dans le noeud 'personal_shopper' pour cibler des produits spécifiques ou des catégories. Assurez-vous de configurer correctement les connexions avec WooCommerce pour garantir une intégration fluide. Enfin, surveillez les performances du flux en utilisant des outils d'analyse pour optimiser les réponses et l'expérience utilisateur.