Automatisation SQL avec n8n : génération de requêtes AI
- Ce workflow n8n a pour objectif de générer des requêtes SQL à partir d'un schéma de base de données en utilisant l'intelligence artificielle. Dans un contexte où les entreprises doivent souvent interagir avec des bases de données, ce type d'automatisation n8n permet de gagner un temps précieux en simplifiant le processus de création de requêtes. Les utilisateurs peuvent ainsi se concentrer sur l'analyse des données plutôt que sur la rédaction manuelle de requêtes SQL complexes.
- Le workflow débute par un déclencheur manuel qui active le processus. Ensuite, il utilise le modèle de chat OpenAI pour interagir avec l'utilisateur et recueillir les informations nécessaires. Les étapes suivantes incluent l'extraction du schéma de la base de données et la liste des tables disponibles, ce qui permet de structurer les données à utiliser. Une fois les données collectées, le workflow combine ces informations avec les entrées de l'utilisateur pour générer la requête SQL appropriée. Les résultats de la requête sont ensuite formatés et préparés pour être renvoyés à l'utilisateur.
- Les bénéfices de ce workflow sont multiples : il réduit le temps passé à écrire des requêtes SQL, minimise les erreurs humaines et améliore l'efficacité des équipes techniques. En intégrant ce type d'automatisation, les entreprises peuvent optimiser leurs processus de gestion de données et tirer davantage de valeur de leurs bases de données.
Workflow n8n SQL, OpenAI, base de données : vue d'ensemble
Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.
Workflow n8n SQL, OpenAI, base de données : détail des nœuds
Inscris-toi pour voir l'intégralité du workflow
Inscription gratuite
S'inscrire gratuitementBesoin d'aide ?{
"id": "P307QnrxpA1ddsM5",
"meta": {
"instanceId": "fb924c73af8f703905bc09c9ee8076f48c17b596ed05b18c0ff86915ef8a7c4a",
"templateCredsSetupCompleted": true
},
"name": "Generate SQL queries from schema only - AI-powered",
"tags": [],
"nodes": [
{
"id": "b7c3ca47-11b3-4378-81fa-68b2f56b295e",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1460,
440
],
"parameters": {
"model": "gpt-4o",
"options": {
"temperature": 0.2
}
},
"credentials": {
"openAiApi": {
"id": "rveqdSfp7pCRON1T",
"name": "Ted's Tech Talks OpenAi"
}
},
"typeVersion": 1
},
{
"id": "977c3a82-440b-4d44-9042-47a673bcb52c",
"name": "Window Buffer Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1640,
440
],
"parameters": {
"contextWindowLength": 10
},
"typeVersion": 1.2
},
{
"id": "c6e9c0e2-d238-4f0b-a4c8-2271f2c8b31b",
"name": "No Operation, do nothing",
"type": "n8n-nodes-base.noOp",
"position": [
2340,
520
],
"parameters": {},
"typeVersion": 1
},
{
"id": "4c141ae8-d2d1-45c7-bb5d-f33841d3cee6",
"name": "List all tables in a database",
"type": "n8n-nodes-base.mySql",
"position": [
520,
-35
],
"parameters": {
"query": "SHOW TABLES;",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"mySql": {
"id": "ICakJ1LRuVl4dRTs",
"name": "db4free TTT account"
}
},
"typeVersion": 2.4
},
{
"id": "54fb3362-041b-4e4f-bfea-f0bc788d8dfd",
"name": "Extract database schema",
"type": "n8n-nodes-base.mySql",
"position": [
700,
-35
],
"parameters": {
"query": "DESCRIBE {{ $json.Tables_in_tttytdb2023 }};",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"mySql": {
"id": "ICakJ1LRuVl4dRTs",
"name": "db4free TTT account"
}
},
"typeVersion": 2.4
},
{
"id": "d55e841d-11ed-4ce2-8c8e-840bd807ff2c",
"name": "Add table name to output",
"type": "n8n-nodes-base.set",
"position": [
880,
-35
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "764176d6-3c89-404d-9c71-301e8a406a68",
"name": "table",
"type": "string",
"value": "={{ $('List all tables in a database').item.json.Tables_in_tttytdb2023 }}"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "ca8d30d6-c1f1-4e89-8cd5-ea3648dc3b0c",
"name": "Convert data to binary",
"type": "n8n-nodes-base.convertToFile",
"position": [
1060,
-35
],
"parameters": {
"options": {},
"operation": "toJson"
},
"typeVersion": 1.1
},
{
"id": "2d89f901-d4e7-4fea-bd69-20b518280bbc",
"name": "Save file locally",
"type": "n8n-nodes-base.readWriteFile",
"position": [
1220,
-35
],
"parameters": {
"options": {},
"fileName": "./chinook_mysql.json",
"operation": "write"
},
"typeVersion": 1
},
{
"id": "04511c4f-44fa-4c23-87af-54d959e6cb2c",
"name": "Extract data from file",
"type": "n8n-nodes-base.extractFromFile",
"position": [
920,
420
],
"parameters": {
"options": {},
"operation": "fromJson"
},
"typeVersion": 1
},
{
"id": "96f129c0-d1d4-4cbf-a24d-0b0cea18a229",
"name": "Chat Trigger",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
440,
420
],
"webhookId": "c308dec7-655c-4b79-832e-991bd8ea891f",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "4d993ed9-3bbe-4bc3-9e5b-c3d738b0e714",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
1480,
300
],
"parameters": {
"text": "=Here is the database schema: {{ $json.schema }}\nHere is the user request: {{ $('Chat Trigger').item.json.chatInput }}",
"agent": "conversationalAgent",
"options": {
"humanMessage": "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{tools}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{input}}",
"systemMessage": "Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nHelp user to work with the MySQL database.\n\nPlease wrap any sql commands into triple quotes. You don't have a tool to run SQL, so the user will do that instead of you."
},
"promptType": "define"
},
"typeVersion": 1.6
},
{
"id": "f5749b31-b28a-4341-b57f-94ee422d2873",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
320,
-280
],
"parameters": {
"color": 3,
"width": 1065.0949045120822,
"height": 466.4256045427794,
"content": "## Run this part only once\nThis section:\n* loads a list of all tables from the database hosted on [db4free](https://db4free.net/signup.php) \n* extracts the database schema for each table and adds the table name\n* converts the schema into a binary JSON format\n* saves the schema `./chinook_mysql.json` file locally\n\n***Now you can use chat to \"talk\" to your data!*** 🎉"
},
"typeVersion": 1
},
{
"id": "6606abc9-1dcb-4dba-b7ef-e221f892eed8",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
-255
],
"parameters": {
"color": 6,
"width": 312.47220527158765,
"height": 174.60585869504342,
"content": "## Pre-workflow setup \nConnect to a free MySQL server and import your database. Follow Step 1 and 2 in this [tutorial](https://blog.n8n.io/compare-databases/) for more.\n\n*The Chinook data used in this workflow is available on [GitHub](https://github.com/msimanga/chinook/tree/master/mysql).* "
},
"typeVersion": 1
},
{
"id": "c8ac730a-04ee-499d-b845-1149967d6aa2",
"name": "When clicking \"Test workflow\"",
"type": "n8n-nodes-base.manualTrigger",
"position": [
360,
-35
],
"parameters": {},
"typeVersion": 1
},
{
"id": "6f0b167c-e012-43e1-9892-ded05be47cf8",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
324.32561050665913,
209.72072645338642
],
"parameters": {
"color": 6,
"width": 1062.678698911262,
"height": 489.29614613074125,
"content": "## On every chat message:\n\n* The workflow gets the data from the local schema file and extracts it as a JSON object. This way, we achieve two important improvements:\n * faster processing time as we don't need to fetch the schema for each table from a slow remote database\n * the Agent will know database structure without seeing the actual data\n* DB schema is then converted into a long string, JSON fields from the Chat Trigger are added before they are entered into the Agent node.\n"
},
"typeVersion": 1
},
{
"id": "3a79350c-aec1-4ad4-a2e0-679957fa420b",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
1400,
-15.552780029374958
],
"parameters": {
"color": 6,
"width": 445.66588600071304,
"height": 714.7896619176862,
"content": "### LangChain AI Agent's system prompt is modified.\nIt uses only the database schema to generate SQL queries. The agent creates these queries but does not execute them. Instead, it passes them to subsequent nodes.\n\n**Example:**\n\"Can you show me the list of all German customers?\" \n\nQueries are generated only when necessary; for some requests, a query may not be needed. This is because certain questions can be answered directly without SQL execution.\n\n**Example:**\n\"Can you list me all tables?\""
},
"typeVersion": 1
},
{
"id": "0cd425db-2a8e-4f48-b749-9a082e948395",
"name": "Combine schema data and chat input",
"type": "n8n-nodes-base.set",
"position": [
1140,
420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "42abd24e-419a-47d6-bc8b-7146dd0b8314",
"name": "sessionId",
"type": "string",
"value": "={{ $('Chat Trigger').first().json.sessionId }}"
},
{
"id": "39244192-a1a6-42fe-bc75-a6fba1f264df",
"name": "action",
"type": "string",
"value": "={{ $('Chat Trigger').first().json.action }}"
},
{
"id": "f78c57d9-df13-43c7-89a7-5387e528107e",
"name": "chatinput",
"type": "string",
"value": "={{ $('Chat Trigger').first().json.chatInput }}"
},
{
"id": "e42b39eb-dfbd-48d9-94ed-d658bdd41454",
"name": "schema",
"type": "string",
"value": "={{ $json.data }}"
}
]
}
},
"executeOnce": true,
"typeVersion": 3.4
},
{
"id": "e4045e33-bb87-488d-8ccf-b4a94339a841",
"name": "Load the schema from the local file",
"type": "n8n-nodes-base.readWriteFile",
"position": [
680,
420
],
"parameters": {
"options": {},
"fileSelector": "./chinook_mysql.json"
},
"typeVersion": 1
},
{
"id": "367ebe95-0b87-44f6-8392-33fe65446c24",
"name": "Extract SQL query",
"type": "n8n-nodes-base.set",
"position": [
1900,
340
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "ebbe194a-4b8b-44c9-ac19-03cf69d353bf",
"name": "query",
"type": "string",
"value": "={{ ($json.output.match(/SELECT[\\s\\S]*?;/i) || [])[0] || \"\" }}"
}
]
},
"includeOtherFields": true
},
"typeVersion": 3.4
},
{
"id": "b856fe78-2435-4075-97f8-ecbeecf3e780",
"name": "Check if query exists",
"type": "n8n-nodes-base.if",
"position": [
2060,
340
],
"parameters": {
"options": {},
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "2963d04d-9d79-49f9-b52a-dc8732aca781",
"operator": {
"type": "string",
"operation": "notEmpty",
"singleValue": true
},
"leftValue": "={{ $json.query }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "87162d31-2f6c-4f4a-af28-c65cbadd8ed5",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1874,
220.45316744685329
],
"parameters": {
"color": 3,
"width": 317.8901548206743,
"height": 278.8174358200552,
"content": "## SQL query extraction\nCheck if the agent's response contains an SQL query. If it does, we extract the query using a regular expression."
},
"typeVersion": 1
},
{
"id": "b3e77333-eaa9-4d23-a78c-8a19ae074739",
"name": "Sticky Note5",
"type": "n8n-nodes-base.stickyNote",
"position": [
1860,
-16.43746604251737
],
"parameters": {
"color": 6,
"width": 882.7611828369563,
"height": 715.7029266156915,
"content": ""
},
"typeVersion": 1
},
{
"id": "269ea79d-5f17-4764-aebb-bba31b43d8bb",
"name": "Sticky Note7",
"type": "n8n-nodes-base.stickyNote",
"position": [
1580,
580
],
"parameters": {
"color": 3,
"width": 257.46308756569573,
"height": 108.03673727584527,
"content": "The AI Agent remembers the schema, questions, and final answers, but not data values, since queries run externally. The agent can't access database content. "
},
"typeVersion": 1
},
{
"id": "2fd1175c-4110-48be-b6bf-2251c678bc04",
"name": "Sticky Note6",
"type": "n8n-nodes-base.stickyNote",
"position": [
2420,
0
],
"parameters": {
"color": 3,
"width": 308.8514666587585,
"height": 123.43139661532095,
"content": "- The SQL node accesses the database and executes the query. The results are then formatted for readability.\n- Both the chat response and the query result are displayed in the chat window."
},
"typeVersion": 1
},
{
"id": "61ae7f7c-1424-4ecb-8a12-78cd98e94d45",
"name": "Sticky Note8",
"type": "n8n-nodes-base.stickyNote",
"position": [
2480,
600
],
"parameters": {
"color": 3,
"width": 250.40895053328057,
"height": 89.90186716520257,
"content": "When the agent responds without an SQL query, you receive an immediate answer with no additional processing."
},
"typeVersion": 1
},
{
"id": "cbb6d1e1-0a75-4b3a-89cd-6bd545b8d414",
"name": "Format query results",
"type": "n8n-nodes-base.set",
"position": [
2420,
140
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "f944d21f-6aac-4842-8926-4108d6cad4bf",
"name": "sqloutput",
"type": "string",
"value": "={{ Object.keys($jmespath($input.all(),'[].json')[0]).join(' | ') }} \n{{ ($jmespath($input.all(),'[].json')).map(obj => Object.values(obj).join(' | ')).join('\\n') }}"
}
]
}
},
"executeOnce": true,
"typeVersion": 3.4
},
{
"id": "d958de24-84ef-4928-a7f3-32cada09a0eb",
"name": "Run SQL query",
"type": "n8n-nodes-base.mySql",
"position": [
2260,
140
],
"parameters": {
"query": "{{ $json.query }}",
"options": {},
"operation": "executeQuery"
},
"credentials": {
"mySql": {
"id": "ICakJ1LRuVl4dRTs",
"name": "db4free TTT account"
}
},
"typeVersion": 2.4
},
{
"id": "99a6dc03-1035-4866-81e4-11dc66bf98ec",
"name": "Prepare final output",
"type": "n8n-nodes-base.set",
"position": [
2560,
420
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "aa55e186-1535-4923-aee4-e088ca69575b",
"name": "output",
"type": "string",
"value": "={{ $json.output }}\n\nSQL result:\n```markdown\n{{ $json.sqloutput }}\n```"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "9380c2f6-15d9-43e4-80a2-3019bcf5ae04",
"name": "Combine query result and chat answer",
"type": "n8n-nodes-base.merge",
"position": [
2340,
340
],
"parameters": {
"mode": "combine",
"options": {},
"combineBy": "combineByPosition"
},
"typeVersion": 3
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "15049b13-91cb-46bd-a7a0-ad648b6f667a",
"connections": {
"AI Agent": {
"main": [
[
{
"node": "Extract SQL query",
"type": "main",
"index": 0
}
]
]
},
"Chat Trigger": {
"main": [
[
{
"node": "Load the schema from the local file",
"type": "main",
"index": 0
}
]
]
},
"Run SQL query": {
"main": [
[
{
"node": "Format query results",
"type": "main",
"index": 0
}
]
]
},
"Extract SQL query": {
"main": [
[
{
"node": "Check if query exists",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Format query results": {
"main": [
[
{
"node": "Combine query result and chat answer",
"type": "main",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Check if query exists": {
"main": [
[
{
"node": "Run SQL query",
"type": "main",
"index": 0
},
{
"node": "Combine query result and chat answer",
"type": "main",
"index": 1
}
],
[
{
"node": "No Operation, do nothing",
"type": "main",
"index": 0
}
]
]
},
"Convert data to binary": {
"main": [
[
{
"node": "Save file locally",
"type": "main",
"index": 0
}
]
]
},
"Extract data from file": {
"main": [
[
{
"node": "Combine schema data and chat input",
"type": "main",
"index": 0
}
]
]
},
"Extract database schema": {
"main": [
[
{
"node": "Add table name to output",
"type": "main",
"index": 0
}
]
]
},
"Add table name to output": {
"main": [
[
{
"node": "Convert data to binary",
"type": "main",
"index": 0
}
]
]
},
"List all tables in a database": {
"main": [
[
{
"node": "Extract database schema",
"type": "main",
"index": 0
}
]
]
},
"When clicking \"Test workflow\"": {
"main": [
[
{
"node": "List all tables in a database",
"type": "main",
"index": 0
}
]
]
},
"Combine schema data and chat input": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Load the schema from the local file": {
"main": [
[
{
"node": "Extract data from file",
"type": "main",
"index": 0
}
]
]
},
"Combine query result and chat answer": {
"main": [
[
{
"node": "Prepare final output",
"type": "main",
"index": 0
}
]
]
}
}
}Workflow n8n SQL, OpenAI, base de données : pour qui est ce workflow ?
Ce workflow s'adresse aux équipes techniques et aux développeurs travaillant avec des bases de données. Il est particulièrement utile pour les entreprises de taille moyenne à grande qui cherchent à automatiser leurs processus de gestion de données. Un niveau technique intermédiaire est recommandé pour tirer pleinement parti de cette automatisation n8n.
Workflow n8n SQL, OpenAI, base de données : problème résolu
Ce workflow résout le problème de la création manuelle de requêtes SQL, qui peut être long et sujet à des erreurs. En automatisant ce processus, il permet aux utilisateurs de générer des requêtes rapidement et efficacement, réduisant ainsi le temps de développement et les risques d'erreurs. Les utilisateurs bénéficient d'une solution qui leur permet de se concentrer sur l'analyse des données plutôt que sur la rédaction de requêtes.
Workflow n8n SQL, OpenAI, base de données : étapes du workflow
Étape 1 : Le workflow est déclenché manuellement.
- Étape 1 : Le modèle de chat OpenAI interroge l'utilisateur pour obtenir des informations sur les requêtes souhaitées.
- Étape 2 : Le schéma de la base de données est extrait, et les tables disponibles sont listées.
- Étape 3 : Les données sont combinées avec les entrées de l'utilisateur pour générer la requête SQL.
- Étape 4 : La requête est exécutée et les résultats sont formatés.
- Étape 5 : Les résultats sont renvoyés à l'utilisateur.
Workflow n8n SQL, OpenAI, base de données : guide de personnalisation
Pour personnaliser ce workflow, vous pouvez modifier le modèle de chat OpenAI utilisé pour adapter les réponses aux besoins spécifiques de votre entreprise. Il est également possible de changer les paramètres de connexion à la base de données pour se connecter à différentes sources de données. Si vous souhaitez ajouter d'autres fonctionnalités, envisagez d'intégrer des nœuds supplémentaires pour traiter des données spécifiques ou pour envoyer des notifications après l'exécution des requêtes. Assurez-vous de sécuriser les informations sensibles en utilisant des pratiques de gestion des données appropriées.