Workflow n8n

Automatisation Slack avec n8n : chatbot AI pour employés

Ce workflow n8n a pour objectif de créer un chatbot AI sur Slack, permettant aux employés d'interagir facilement avec les données de l'entreprise. Grâce à cette automatisation n8n, les utilisateurs peuvent poser des questions et recevoir des réponses instantanées, améliorant ainsi l'efficacité de la communication interne. Le workflow commence par un déclencheur Slack qui capte les messages des utilisateurs. Ensuite, il utilise un agent AI pour traiter ces messages et générer des réponses pertinentes. Les données sont enrichies par des embeddings OpenAI, qui permettent de mieux comprendre le contexte des questions posées. Le système de mémoire simple assure que les interactions précédentes sont prises en compte, offrant ainsi une expérience utilisateur fluide. En parallèle, le workflow utilise des requêtes HTTP pour créer et rafraîchir des collections de données, garantissant que le chatbot dispose toujours des informations les plus récentes. Les résultats sont ensuite envoyés directement dans le canal Slack, permettant une communication rapide et efficace. En intégrant cette solution, les entreprises peuvent réduire le temps passé à chercher des informations et améliorer la satisfaction des employés, tout en optimisant les processus internes.

Tags clés :automatisationSlackchatbotn8nAI
Catégorie: Webhook · Tags: automatisation, Slack, chatbot, n8n, AI0

Workflow n8n Slack, chatbot : vue d'ensemble

Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.

Workflow n8n Slack, chatbot : détail des nœuds

  • AI Agent

    Ce noeud représente un agent d'intelligence artificielle qui traite du texte selon des options et un type de prompt spécifiés.

  • Simple Memory

    Ce noeud gère la mémoire simple en stockant des informations dans une fenêtre de contexte définie pour une session.

  • Embeddings OpenAI1

    Ce noeud génère des embeddings à l'aide de l'API OpenAI selon les options fournies.

  • RAG

    Ce noeud effectue une recherche augmentée (RAG) en utilisant un magasin de vecteurs Qdrant avec des paramètres spécifiques.

  • Calculator

    Ce noeud exécute des calculs à l'aide d'un outil de calcul intégré.

  • Get message

    Ce noeud déclenche un événement lorsqu'un message est reçu sur un canal Slack spécifié.

  • Send message

    Ce noeud envoie un message sur un canal Slack avec le texte et les options spécifiés.

  • When clicking ‘Test workflow’

    Ce noeud permet de tester manuellement le workflow en déclenchant son exécution.

  • Create collection

    Ce noeud effectue une requête HTTP pour créer une collection en utilisant les paramètres fournis.

  • Refresh collection

    Ce noeud effectue une requête HTTP pour rafraîchir une collection existante.

  • Get folder

    Ce noeud récupère des dossiers depuis Google Drive selon les filtres et options spécifiés.

  • Download Files

    Ce noeud télécharge des fichiers depuis Google Drive en utilisant l'identifiant de fichier fourni.

  • Default Data Loader

    Ce noeud charge des données par défaut à partir d'une source spécifiée selon les options.

  • Token Splitter

    Ce noeud divise un texte en morceaux selon une taille et un chevauchement de morceaux définis.

  • Sticky Note3

    Ce noeud crée une note autocollante avec des paramètres de couleur, de taille et de contenu spécifiés.

  • Qdrant Vector Store1

    Ce noeud interagit avec un magasin de vecteurs Qdrant selon le mode et les options spécifiés.

  • Sticky Note5

    Ce noeud crée une note autocollante avec des paramètres de couleur, de taille et de contenu spécifiés.

  • Sticky Note2

    Ce noeud crée une note autocollante avec des paramètres de couleur, de taille et de contenu spécifiés.

  • Embeddings OpenAI2

    Ce noeud génère des embeddings à l'aide de l'API OpenAI selon les options fournies.

  • Sticky Note4

    Ce noeud crée une note autocollante avec des paramètres de taille et de contenu spécifiés.

  • Anthropic Chat Model

    Ce noeud utilise le modèle de chat Anthropic pour traiter des requêtes selon les options fournies.

Inscris-toi pour voir l'intégralité du workflow

Inscription gratuite

S'inscrire gratuitementBesoin d'aide ?
{
  "id": "SHpLY12UobbcWRnl",
  "meta": {
    "instanceId": "a4bfc93e975ca233ac45ed7c9227d84cf5a2329310525917adaf3312e10d5462",
    "templateCredsSetupCompleted": true
  },
  "name": "Slack AI Chatbot with RAG for company staff",
  "tags": [],
  "nodes": [
    {
      "id": "df994f64-af5b-49f5-ad83-5c4b69983d41",
      "name": "AI Agent",
      "type": "@n8n/n8n-nodes-langchain.agent",
      "position": [
        -780,
        340
      ],
      "parameters": {
        "text": "={{ $json.blocks[0].elements[0].elements[1].text }}",
        "options": {
          "systemMessage": "=You are an AI assistant  connected to the company's internal knowledge base through a RAG (Retrieval Augmented Generation) system. Your purpose is to help team members quickly find and understand information from company documents.\n\nCORE RESPONSIBILITIES:\n- Respond to queries about company policies, procedures, documentation, and internal knowledge\n- Provide concise, accurate information retrieved from the company's document repository\n- Format responses appropriately for Slack (use markdown for clarity)\n- Cite the specific document source when providing information\n\nINTERACTION GUIDELINES:\n- Keep responses brief and to the point (aim for 3-5 sentences when possible)\n- Use bullet points for lists or step-by-step instructions\n- Include direct quotes from documents when relevant, using > for blockquotes\n- When unable to find information, clearly state this and suggest alternative resources\n\nTECHNICAL CONTEXT:\n- You receive queries through Slack messages\n- You use the RAG tool in n8n to search and retrieve relevant document sections\n- All responses should be crafted for readability on Slack's interface\n\nRESPONSE STRUCTURE:\n1. Direct answer to the question (1-2 sentences)\n2. Supporting details from retrieved documents (2-3 sentences or bullet points)\n3. Source citation (document name and date if available)\n4. Follow-up suggestion if applicable (1 sentence)\n\nAlways prioritize accuracy over speed. If multiple documents contain relevant information, synthesize the most important points rather than providing all details. If the query is ambiguous, ask a clarifying question before searching.\n\nRemember that you are a tool to empower employees, not replace human judgment. When questions involve complex decision-making, provide the relevant information and encourage the user to consult with appropriate team members.\n\nDate; {{ $now }}"
        },
        "promptType": "define"
      },
      "typeVersion": 1.8
    },
    {
      "id": "047141fc-a7a0-4532-ae45-da0f2cc27b69",
      "name": "Simple Memory",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        -720,
        600
      ],
      "parameters": {
        "sessionKey": "={{ $('Get message').item.json.channel }}_{{ $('Get message').item.json.blocks[0].elements[0].elements[0].user_id }}",
        "sessionIdType": "customKey",
        "contextWindowLength": 10
      },
      "typeVersion": 1.3
    },
    {
      "id": "f7da4458-3dc5-43b8-a97d-dac3e599543c",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -460,
        800
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "4zwP0MSr8zkNvvV9",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "14a6052f-e619-4d19-99aa-42253c45a913",
      "name": "RAG",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -420,
        620
      ],
      "parameters": {
        "mode": "retrieve-as-tool",
        "topK": 10,
        "options": {},
        "toolName": "company_info",
        "toolDescription": "Get business documents",
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "COLLECTION"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "iyQ6MQiVaF3VMBmt",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1.1
    },
    {
      "id": "c6334fd2-0d54-4980-857e-079be08959a5",
      "name": "Calculator",
      "type": "@n8n/n8n-nodes-langchain.toolCalculator",
      "position": [
        -560,
        600
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "87a629b9-980f-4d0d-9fee-5efa560770d2",
      "name": "Get message",
      "type": "n8n-nodes-base.slackTrigger",
      "position": [
        -1040,
        340
      ],
      "webhookId": "3146b3e9-4cfc-493f-882c-57c865380115",
      "parameters": {
        "options": {},
        "trigger": [
          "app_mention"
        ],
        "channelId": {
          "__rl": true,
          "mode": "list",
          "value": "C08L6SEPWMB",
          "cachedResultName": "n8n-test"
        }
      },
      "credentials": {
        "slackApi": {
          "id": "QjSyGP8ykppazXDW",
          "name": "Slack account (Token)"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "939b309d-1828-4159-b1dc-4a1629069c37",
      "name": "Send message",
      "type": "n8n-nodes-base.slack",
      "position": [
        -420,
        340
      ],
      "webhookId": "946ab278-f815-4bd3-a20d-49ba59d76659",
      "parameters": {
        "text": "={{ $json.output }}",
        "select": "channel",
        "channelId": {
          "__rl": true,
          "mode": "list",
          "value": "C08L6SEPWMB",
          "cachedResultName": "n8n-test"
        },
        "otherOptions": {
          "mrkdwn": true,
          "thread_ts": {
            "replyValues": {
              "thread_ts": "={{ $('Get message').item.json.event_ts }}",
              "reply_broadcast": true
            }
          },
          "unfurl_links": true,
          "includeLinkToWorkflow": false
        }
      },
      "credentials": {
        "slackApi": {
          "id": "QjSyGP8ykppazXDW",
          "name": "Slack account (Token)"
        }
      },
      "typeVersion": 2.3
    },
    {
      "id": "50be03ea-ab0c-48cb-b95a-b096e51c3d16",
      "name": "When clicking ‘Test workflow’",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        -1120,
        -1020
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "2a765d76-59c6-49c3-95b4-429e5439da37",
      "name": "Create collection",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -820,
        -1160
      ],
      "parameters": {
        "url": "https://QDRANTURL/collections/COLLECTION",
        "method": "POST",
        "options": {},
        "jsonBody": "{\n  \"filter\": {}\n}",
        "sendBody": true,
        "sendHeaders": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "headerParameters": {
          "parameters": [
            {
              "name": "Content-Type",
              "value": "application/json"
            }
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "qhny6r5ql9wwotpn",
          "name": "Qdrant API (Hetzner)"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "66eb2691-4316-4470-aa6d-9696beff6cf2",
      "name": "Refresh collection",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        -820,
        -900
      ],
      "parameters": {
        "url": "https://QDRANTURL/collections/COLLECTION/points/delete",
        "method": "POST",
        "options": {},
        "jsonBody": "{\n  \"filter\": {}\n}",
        "sendBody": true,
        "sendHeaders": true,
        "specifyBody": "json",
        "authentication": "genericCredentialType",
        "genericAuthType": "httpHeaderAuth",
        "headerParameters": {
          "parameters": [
            {
              "name": "Content-Type",
              "value": "application/json"
            }
          ]
        }
      },
      "credentials": {
        "httpHeaderAuth": {
          "id": "qhny6r5ql9wwotpn",
          "name": "Qdrant API (Hetzner)"
        }
      },
      "typeVersion": 4.2
    },
    {
      "id": "c0e16404-d82c-418e-b384-d9cc5dceeab6",
      "name": "Get folder",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        -600,
        -900
      ],
      "parameters": {
        "filter": {
          "driveId": {
            "__rl": true,
            "mode": "list",
            "value": "My Drive",
            "cachedResultUrl": "https://drive.google.com/drive/my-drive",
            "cachedResultName": "My Drive"
          },
          "folderId": {
            "__rl": true,
            "mode": "id",
            "value": "=test-whatsapp"
          }
        },
        "options": {},
        "resource": "fileFolder"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "HEy5EuZkgPZVEa9w",
          "name": "Google Drive account (n3w.it)"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "ed9768aa-e381-4d53-b0b4-702833e388b9",
      "name": "Download Files",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        -380,
        -900
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $json.id }}"
        },
        "options": {
          "googleFileConversion": {
            "conversion": {
              "docsToFormat": "text/plain"
            }
          }
        },
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "HEy5EuZkgPZVEa9w",
          "name": "Google Drive account (n3w.it)"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "0da72902-4338-4610-a48c-ad2762690623",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        20,
        -700
      ],
      "parameters": {
        "options": {},
        "dataType": "binary"
      },
      "typeVersion": 1
    },
    {
      "id": "8783e0bc-df82-4bee-9340-5c788e7f7d3c",
      "name": "Token Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterTokenSplitter",
      "position": [
        0,
        -520
      ],
      "parameters": {
        "chunkSize": 300,
        "chunkOverlap": 30
      },
      "typeVersion": 1
    },
    {
      "id": "d3872217-ff7e-4ed7-9992-ab2b6f5af9e1",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -620,
        -1220
      ],
      "parameters": {
        "color": 6,
        "width": 880,
        "height": 220,
        "content": "# STEP 1\n\n## Create Qdrant Collection\nChange:\n- QDRANTURL\n- COLLECTION"
      },
      "typeVersion": 1
    },
    {
      "id": "887598e8-5ac2-4433-9bd6-779a028eab14",
      "name": "Qdrant Vector Store1",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        -140,
        -900
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "=COLLECTION"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "iyQ6MQiVaF3VMBmt",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d0ab0fb8-e4b8-49e2-9d40-74c9855af7b0",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -840,
        -960
      ],
      "parameters": {
        "color": 4,
        "width": 620,
        "height": 400,
        "content": "# STEP 2\n\n\n\n\n\n\n\n\n\n\n\n\n## Documents vectorization with Qdrant and Google Drive\nChange:\n- QDRANTURL\n- COLLECTION"
      },
      "typeVersion": 1
    },
    {
      "id": "f3311b6f-1130-41c7-ab3a-447bb617be1b",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1140,
        -1500
      ],
      "parameters": {
        "color": 3,
        "width": 1400,
        "height": 200,
        "content": "# Slack AI Chatbot Workflow with RAG\n\nImagine having an AI chatbot on Slack that seamlessly integrates with your company’s workflow, automating repetitive requests. No more digging through emails or documents to find answers about IT requests, company policies, or vacation days—just ask the bot, and it will instantly provide the right information.\n\nWith its 24/7 availability, the chatbot ensures that team members get immediate support without waiting for a colleague to be online, making assistance faster and more efficient."
      },
      "typeVersion": 1
    },
    {
      "id": "b81155d1-6382-4bd8-96a1-09b063f95c43",
      "name": "Embeddings OpenAI2",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        -140,
        -680
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1.1
    },
    {
      "id": "7754f8bd-56c2-46c9-85da-d9a49ccf5c81",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -1060,
        -340
      ],
      "parameters": {
        "width": 900,
        "height": 640,
        "content": "# STEP 3\nCreate a Slack Bot [here](https://api.slack.com) and add it to your Slack (Private o Public) channel.\n\nSet \"Scope Subscribe to Bot Event\":\n- app_mention \n- message.channels\n\nSet Bot Token Scopes:\n- app_mentions:read\n- channels:history\n- channels:manage\n- channels:read\n- chat:write\n- files:read\n- groups:history\n- groups:read\n- im:history\n- im:read\n- mpim:history\n- mpim:read\n- reactions:read\n- reactions:write\n- usergroups:read\n- users:read\n\nIn RAG Qdrant node change: \n- COLLECTION"
      },
      "typeVersion": 1
    },
    {
      "id": "9933da43-8797-40ed-b399-49ddeb369e42",
      "name": "Anthropic Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatAnthropic",
      "position": [
        -900,
        600
      ],
      "parameters": {
        "model": {
          "__rl": true,
          "mode": "list",
          "value": "claude-3-7-sonnet-20250219",
          "cachedResultName": "Claude 3.7 Sonnet"
        },
        "options": {}
      },
      "credentials": {
        "anthropicApi": {
          "id": "NNTZAD0Gmf7lcniq",
          "name": "Anthropic account"
        }
      },
      "typeVersion": 1.3
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "9ed2f0d0-c463-4942-be0c-e5b606973048",
  "connections": {
    "RAG": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "AI Agent": {
      "main": [
        [
          {
            "node": "Send message",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Calculator": {
      "ai_tool": [
        [
          {
            "node": "AI Agent",
            "type": "ai_tool",
            "index": 0
          }
        ]
      ]
    },
    "Get folder": {
      "main": [
        [
          {
            "node": "Download Files",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Get message": {
      "main": [
        [
          {
            "node": "AI Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Simple Memory": {
      "ai_memory": [
        [
          {
            "node": "AI Agent",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "Download Files": {
      "main": [
        [
          {
            "node": "Qdrant Vector Store1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Token Splitter": {
      "ai_textSplitter": [
        [
          {
            "node": "Default Data Loader",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI1": {
      "ai_embedding": [
        [
          {
            "node": "RAG",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI2": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store1",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Refresh collection": {
      "main": [
        [
          {
            "node": "Get folder",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Default Data Loader": {
      "ai_document": [
        [
          {
            "node": "Qdrant Vector Store1",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Anthropic Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "AI Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "When clicking ‘Test workflow’": {
      "main": [
        [
          {
            "node": "Create collection",
            "type": "main",
            "index": 0
          },
          {
            "node": "Refresh collection",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

Workflow n8n Slack, chatbot : pour qui est ce workflow ?

Ce workflow s'adresse aux entreprises de taille moyenne à grande qui utilisent Slack comme outil de communication interne. Il est particulièrement utile pour les équipes techniques et les départements RH souhaitant automatiser les réponses aux questions fréquentes des employés. Un niveau technique intermédiaire est recommandé pour la mise en place et la personnalisation du workflow.

Workflow n8n Slack, chatbot : problème résolu

Ce workflow résout le problème de la lenteur dans la recherche d'informations au sein des entreprises. En automatisant les réponses aux questions courantes des employés, il élimine les frustrations liées à l'attente de réponses de la part des collègues ou des responsables. Les utilisateurs bénéficient d'un accès rapide aux informations, ce qui améliore leur productivité et leur satisfaction au travail. De plus, cela réduit la charge de travail des équipes qui n'ont plus à répondre manuellement à chaque question.

Workflow n8n Slack, chatbot : étapes du workflow

Étape 1 : Le workflow est déclenché par un message dans Slack.

  • Étape 1 : Le message est traité par l'agent AI pour générer une réponse.
  • Étape 2 : Les embeddings OpenAI enrichissent le contexte de la question.
  • Étape 3 : La mémoire simple conserve les interactions précédentes pour un meilleur suivi.
  • Étape 4 : Des requêtes HTTP créent et mettent à jour les collections de données nécessaires.
  • Étape 5 : La réponse est envoyée dans le canal Slack approprié.

Workflow n8n Slack, chatbot : guide de personnalisation

Pour personnaliser ce workflow, commencez par ajuster les paramètres du déclencheur Slack, notamment le canal à surveiller. Vous pouvez également modifier les options de l'agent AI pour affiner les réponses fournies. Les URL des requêtes HTTP doivent être mises à jour pour pointer vers vos propres API ou bases de données. Pensez à configurer les embeddings OpenAI selon vos besoins spécifiques en matière de traitement du langage. Enfin, assurez-vous que les permissions Slack sont correctement configurées pour permettre au bot d'envoyer des messages dans le canal choisi.