Workflow n8n

Automatisation de génération de contenu avec n8n : création d'articles

Ce workflow n8n est conçu pour automatiser la génération de contenu en ligne, en utilisant des modèles d'IA avancés pour créer des articles de blog. Dans un contexte où la production de contenu de qualité est essentielle pour le marketing digital, ce workflow permet aux entreprises de gagner du temps tout en maintenant une voix de marque cohérente. En utilisant des outils comme OpenAI et des requêtes HTTP, ce processus facilite l'extraction d'articles existants et la génération de nouveaux contenus basés sur des instructions spécifiques.

  • Étape 1 : Le workflow commence par un déclencheur manuel qui permet à l'utilisateur de tester le flux.
  • Étape 2 : Ensuite, plusieurs modèles de chat OpenAI sont utilisés pour générer des idées et des contenus basés sur les caractéristiques vocales et le style de marque.
  • Étape 3 : Les articles sont extraits via des requêtes HTTP, et les URLs sont ensuite traitées pour obtenir le contenu pertinent.
  • Étape 4 : Les articles générés sont combinés et formatés avant d'être sauvegardés en tant que brouillons sur WordPress. Ce workflow offre une solution efficace pour les équipes marketing cherchant à automatiser leur production de contenu tout en réduisant les coûts et en améliorant la qualité des publications.
Tags clés :automatisationcontent marketingn8ngénération de contenuIA
Catégorie: Manual · Tags: automatisation, content marketing, n8n, génération de contenu, IA0

Workflow n8n content marketing, génération de contenu : vue d'ensemble

Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.

Workflow n8n content marketing, génération de contenu : détail des nœuds

  • When clicking ‘Test workflow’

    Déclenche le workflow lorsque l'utilisateur clique sur 'Test workflow'.

  • OpenAI Chat Model

    Utilise le modèle de chat OpenAI pour générer des réponses basées sur les options fournies.

  • OpenAI Chat Model1

    Utilise un autre modèle de chat OpenAI pour traiter les données d'entrée selon les options spécifiées.

  • OpenAI Chat Model2

    Applique un troisième modèle de chat OpenAI pour générer des réponses en fonction des paramètres donnés.

  • Extract Voice Characteristics

    Extrait les caractéristiques vocales à partir du texte fourni en utilisant un extracteur d'informations.

  • Get Blog

    Effectue une requête HTTP pour récupérer le contenu d'un blog à partir de l'URL spécifiée.

  • Get Article

    Effectue une requête HTTP pour obtenir le contenu d'un article à partir de l'URL fournie.

  • Extract Article URLs

    Extrait les URLs des articles à partir du contenu HTML en utilisant les valeurs d'extraction spécifiées.

  • Split Out URLs

    Sépare les URLs extraites en fonction du champ spécifié pour un traitement ultérieur.

  • Latest Articles

    Limite le nombre d'articles à traiter en fonction du nombre maximum d'éléments spécifié.

  • Extract Article Content

    Extrait le contenu des articles à partir du HTML en utilisant les valeurs d'extraction fournies.

  • Combine Articles

    Combine les articles extraits en un seul ensemble de données selon les champs spécifiés.

  • Article Style & Brand Voice

    Fusionne les styles et la voix de marque des articles en fonction des options et du mode choisis.

  • Save as Draft

    Enregistre un article en tant que brouillon sur WordPress avec le titre et les champs supplémentaires fournis.

  • Sticky Note

    Crée une note autocollante avec les paramètres de couleur, largeur, hauteur et contenu spécifiés.

  • Sticky Note1

    Crée une autre note autocollante avec des paramètres personnalisés pour la couleur, la taille et le contenu.

  • Sticky Note2

    Ajoute une note autocollante supplémentaire avec des spécifications de couleur et de contenu.

  • Capture Existing Article Structure

    Capture la structure d'un article existant en utilisant un modèle de langage avec les paramètres fournis.

  • Markdown

    Transforme le contenu HTML en Markdown selon les options spécifiées.

  • Sticky Note3

    Crée une note autocollante avec des spécifications de couleur, taille et contenu.

  • Sticky Note4

    Ajoute une note autocollante avec des paramètres de couleur, largeur, hauteur et contenu.

  • Content Generation Agent

    Utilise un extracteur d'informations pour générer du contenu basé sur le texte et les attributs fournis.

  • Sticky Note6

    Ajoute une note autocollante avec des spécifications de couleur, taille et contenu.

  • Sticky Note5

    Crée une note autocollante avec des paramètres de couleur, largeur, hauteur et contenu.

  • Sticky Note7

    Ajoute une note autocollante avec des spécifications de couleur, taille et contenu.

  • Sticky Note8

    Crée une note autocollante avec des spécifications de largeur, hauteur et contenu.

  • New Article Instruction

    Définit des options et des affectations pour un nouvel article dans le workflow.

Inscris-toi pour voir l'intégralité du workflow

Inscription gratuite

S'inscrire gratuitementBesoin d'aide ?
{
  "nodes": [
    {
      "id": "d3159589-dbb7-4cca-91f5-09e8b2e4cba8",
      "name": "When clicking ‘Test workflow’",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        240,
        500
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "b4b42b3f-ef30-4fc8-829d-59f8974c4168",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2180,
        700
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "032c3012-ed8d-44eb-94f0-35790f4b616f",
      "name": "OpenAI Chat Model1",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2980,
        460
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "bf922785-7e8f-4f93-bfff-813c16d93278",
      "name": "OpenAI Chat Model2",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        2020,
        520
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "8gccIjcuf3gvaoEr",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "d8d4b26f-270f-4b39-a4cd-a6e4361da591",
      "name": "Extract Voice Characteristics",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        2160,
        540
      ],
      "parameters": {
        "text": "=### Analyse the given content\n\n{{ $json.data.map(item => item.replace(/\\n/g, '')).join('\\n---\\n') }}",
        "options": {
          "systemPromptTemplate": "You help identify and define a company or individual's \"brand voice\". Using the given content belonging to the company or individual, extract all voice characteristics from it along with description and examples demonstrating it."
        },
        "schemaType": "manual",
        "inputSchema": "{\n\t\"type\": \"array\",\n \"items\": {\n \"type\": \"object\",\n \t\"properties\": {\n \"characteristic\": { \"type\": \"string\" },\n \"description\": { \"type\": \"string\" },\n \"examples\": { \"type\": \"array\", \"items\": { \"type\": \"string\" } }\n }\n\t}\n}"
      },
      "typeVersion": 1
    },
    {
      "id": "8cca272c-b912-40f1-ba08-aa7c5ff7599c",
      "name": "Get Blog",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        480,
        500
      ],
      "parameters": {
        "url": "https://blog.n8n.io",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "aa1e2a02-2e2b-4e8d-aef8-f5f7a54d9562",
      "name": "Get Article",
      "type": "n8n-nodes-base.httpRequest",
      "position": [
        1120,
        500
      ],
      "parameters": {
        "url": "=https://blog.n8n.io{{ $json.article }}",
        "options": {}
      },
      "typeVersion": 4.2
    },
    {
      "id": "78ae3dfc-5afd-452f-a2b6-bdb9dbd728bd",
      "name": "Extract Article URLs",
      "type": "n8n-nodes-base.html",
      "position": [
        640,
        500
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "article",
              "attribute": "href",
              "cssSelector": ".item.post a.global-link",
              "returnArray": true,
              "returnValue": "attribute"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "3b2b6fea-ed2f-43ba-b6d1-e0666b88c65b",
      "name": "Split Out URLs",
      "type": "n8n-nodes-base.splitOut",
      "position": [
        800,
        500
      ],
      "parameters": {
        "options": {},
        "fieldToSplitOut": "article"
      },
      "typeVersion": 1
    },
    {
      "id": "68bb20b1-2177-4c0f-9ada-d1de69bdc2a0",
      "name": "Latest Articles",
      "type": "n8n-nodes-base.limit",
      "position": [
        960,
        500
      ],
      "parameters": {
        "maxItems": 5
      },
      "typeVersion": 1
    },
    {
      "id": "f20d7393-24c9-4a51-872e-0dce391f661c",
      "name": "Extract Article Content",
      "type": "n8n-nodes-base.html",
      "position": [
        1280,
        500
      ],
      "parameters": {
        "options": {},
        "operation": "extractHtmlContent",
        "extractionValues": {
          "values": [
            {
              "key": "data",
              "cssSelector": ".post-section",
              "returnValue": "html"
            }
          ]
        }
      },
      "typeVersion": 1.2
    },
    {
      "id": "299a04be-fe9b-47d9-b2c6-e2e4628f77e0",
      "name": "Combine Articles",
      "type": "n8n-nodes-base.aggregate",
      "position": [
        1780,
        540
      ],
      "parameters": {
        "options": {
          "mergeLists": true
        },
        "fieldsToAggregate": {
          "fieldToAggregate": [
            {
              "fieldToAggregate": "data"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "8480ece7-0dc1-4682-ba9e-ded2c138d8b8",
      "name": "Article Style & Brand Voice",
      "type": "n8n-nodes-base.merge",
      "position": [
        2560,
        320
      ],
      "parameters": {
        "mode": "combine",
        "options": {},
        "combineBy": "combineByPosition"
      },
      "typeVersion": 3
    },
    {
      "id": "024efee2-5a2f-455c-a150-4b9bdce650b2",
      "name": "Save as Draft",
      "type": "n8n-nodes-base.wordpress",
      "position": [
        3460,
        320
      ],
      "parameters": {
        "title": "={{ $json.output.title }}",
        "additionalFields": {
          "slug": "={{ $json.output.title.toSnakeCase() }}",
          "format": "standard",
          "status": "draft",
          "content": "={{ $json.output.body }}"
        }
      },
      "credentials": {
        "wordpressApi": {
          "id": "YMW8mGrekjfxKJUe",
          "name": "Wordpress account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "71f4ab1e-ef61-48f3-92e8-70691f7d0750",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        480,
        180
      ],
      "parameters": {
        "color": 7,
        "width": 606,
        "height": 264,
        "content": "## 1. Import Existing Content\n[Read more about the HTML node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.html/)\n\nFirst, we'll need to gather existing content for the brand voice we want to replicate. This content can be blogs, social media posts or internal documents - the idea is to use this content to \"train\" our AI to produce content from the provided examples. One call out is that the quality and consistency of the content is important to get the desired results.\n\nIn this demonstration, we'll grab the latest blog posts off a corporate blog to use as an example. Since, the blog articles are likely consistent because of the source and narrower focus of the medium, it'll serve well to showcase this workflow."
      },
      "typeVersion": 1
    },
    {
      "id": "3d3a55a5-4b4a-4ea2-a39c-82b366fb81e6",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1440,
        240
      ],
      "parameters": {
        "color": 7,
        "width": 434,
        "height": 230,
        "content": "## 2. Convert HTML to Markdown\n[Learn more about the Markdown node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.markdown)\n\nMarkdown is a great way to optimise the article data we're sending to the LLM because it reduces the amount of tokens required but keeps all relevant writing structure information.\n\nAlso useful to get Markdown output as a response because typically it's the format authors will write in."
      },
      "typeVersion": 1
    },
    {
      "id": "08c0b683-ec06-47ce-871c-66265195ca29",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1980,
        80
      ],
      "parameters": {
        "color": 7,
        "width": 446,
        "height": 233,
        "content": "## 3. Using AI to Analyse Article Structure and Writing Styles\n[Read more about the Basic LLM Chain node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.chainllm)\n\nOur approach is to first perform a high-level analysis of all available articles in order to replicate their content layout and writing styles. This will act as a guideline to help the AI to structure our future articles."
      },
      "typeVersion": 1
    },
    {
      "id": "515fe69f-061e-4dfc-94ed-4cf2fbe10b7b",
      "name": "Capture Existing Article Structure",
      "type": "@n8n/n8n-nodes-langchain.chainLlm",
      "position": [
        2020,
        380
      ],
      "parameters": {
        "text": "={{ $json.data.join('\\n---\\n') }}",
        "messages": {
          "messageValues": [
            {
              "message": "=Given the following one or more articles (which are separated by ---), describe how best one could replicate the common structure, layout, language and writing styles of all as aggregate."
            }
          ]
        },
        "promptType": "define"
      },
      "typeVersion": 1.4
    },
    {
      "id": "ba4e68fb-eccc-4efa-84be-c42a695dccdb",
      "name": "Markdown",
      "type": "n8n-nodes-base.markdown",
      "position": [
        1600,
        540
      ],
      "parameters": {
        "html": "={{ $json.data }}",
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "d459ff5b-0375-4458-a49f-59700bb57e12",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2340,
        740
      ],
      "parameters": {
        "color": 7,
        "width": 446,
        "height": 253,
        "content": "## 4. Using AI to Extract Voice Characteristics and Traits\n[Read more about the Information Extractor node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor/)\n\nSecond, we'll use AI to analysis the brand voice characteristics of the previous articles. This picks out the tone, style and choice of language used and identifies them into categories. These categories will be used as guidelines for the AI to keep the future article consistent in tone and voice. "
      },
      "typeVersion": 1
    },
    {
      "id": "71fe32a9-1b8a-446c-a4ff-fb98c6a68e1b",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2720,
        0
      ],
      "parameters": {
        "color": 7,
        "width": 626,
        "height": 633,
        "content": "## 5. Automate On-Brand Articles Using AI\n[Read more about the Information Extractor node](https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.information-extractor)\n\nFinally with this approach, we can feed both content and voice guidelines into our final LLM - our content generation agent - to produce any number of on-brand articles, social media posts etc.\n\nWhen it comes to assessing the output, note the AI does a pretty good job at simulating format and reusing common phrases and wording for the target article. However, this could become repetitive very quickly! Whilst AI can help speed up the process, a human touch may still be required to add a some variety."
      },
      "typeVersion": 1
    },
    {
      "id": "4e6fbe4e-869e-4bef-99ba-7b18740caecf",
      "name": "Content Generation Agent",
      "type": "@n8n/n8n-nodes-langchain.informationExtractor",
      "position": [
        3000,
        320
      ],
      "parameters": {
        "text": "={{ $json.instruction }}",
        "options": {
          "systemPromptTemplate": "=You are a blog content writer who writes using the following article guidelines. Write a content piece as requested by the user. Output the body as Markdown. Do not include the date of the article because the publishing date is not determined yet.\n\n## Brand Article Style\n{{ $('Article Style & Brand Voice').item.json.text }}\n\n##n Brand Voice Characteristics\n\nHere are the brand voice characteristic and examples you must adopt in your piece. Pick only the characteristic which make sense for the user's request. Try to keep it as similar as possible but don't copy word for word.\n\n|characteristic|description|examples|\n|-|-|-|\n{{\n$('Article Style & Brand Voice').item.json.output.map(item => (\n`|${item.characteristic}|${item.description}|${item.examples.map(ex => `\"${ex}\"`).join(', ')}|`\n)).join('\\n')\n}}"
        },
        "attributes": {
          "attributes": [
            {
              "name": "title",
              "required": true,
              "description": "title of article"
            },
            {
              "name": "summary",
              "required": true,
              "description": "summary of article"
            },
            {
              "name": "body",
              "required": true,
              "description": "body of article"
            },
            {
              "name": "characteristics",
              "required": true,
              "description": "comma delimited string of characteristics chosen"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "022de44c-c06c-41ac-bd50-38173dae9b37",
      "name": "Sticky Note6",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        3460,
        480
      ],
      "parameters": {
        "color": 7,
        "width": 406,
        "height": 173,
        "content": "## 6. Save Draft to Wordpress\n[Learn more about the Wordpress node](https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.wordpress/)\n\nTo close out the template, we'll simple save our generated article as a draft which could allow human team members to review and validate the article before publishing."
      },
      "typeVersion": 1
    },
    {
      "id": "fe54c40e-6ddd-45d6-a938-f467e4af3f57",
      "name": "Sticky Note5",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2900,
        660
      ],
      "parameters": {
        "color": 5,
        "width": 440,
        "height": 120,
        "content": "### Q. Do I need to analyse Brand Voice for every article?\nA. No! I would recommend storing the results of the AI's analysis and re-use for a list of planned articles rather than generate anew every time."
      },
      "typeVersion": 1
    },
    {
      "id": "1832131e-21e8-44fc-9370-907f7b5a6eda",
      "name": "Sticky Note7",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1000,
        680
      ],
      "parameters": {
        "color": 5,
        "width": 380,
        "height": 120,
        "content": "### Q. Can I use other media than blog articles?\nA. Yes! This approach can use other source materials such as PDFs, as long as they can be produces in a text format to give to the LLM."
      },
      "typeVersion": 1
    },
    {
      "id": "8e8706a3-122d-436b-9206-de7a6b2f3c39",
      "name": "Sticky Note8",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        -120
      ],
      "parameters": {
        "width": 400,
        "height": 800,
        "content": "## Try It Out!\n### This n8n template demonstrates how to use AI to generate new on-brand written content by analysing previously published content.\n\nWith such an approach, it's possible to generate a steady stream of blog article drafts quickly with high consistency with your brand and existing content.\n\n### How it works\n* In this demonstration, the n8n.io blog is used as the source of existing published content and 5 of the latest articles are imported via the HTTP node.\n* The HTML node is extract the article bodies which are then converted to markdown for our LLMs.\n* We use LLM nodes to (1) understand the article structure and writing style and (2) identify the brand voice characteristics used in the posts.\n* These are then used as guidelines in our final LLM node when generating new articles.\n* Finally, a draft is saved to Wordpress for human editors to review or use as starting point for their own articles.\n\n### How to use\n* Update Step 1 to fetch data from your desired blog or change to fetch existing content in a different way.\n* Update Step 5 to provide your new article instruction. For optimal output, theme topics relevant to your brand.\n\n\n### Need Help?\nJoin the [Discord](https://discord.com/invite/XPKeKXeB7d) or ask in the [Forum](https://community.n8n.io/)!\n\nHappy Hacking!"
      },
      "typeVersion": 1
    },
    {
      "id": "1510782d-0f88-40ca-99a8-44f984022c8e",
      "name": "New Article Instruction",
      "type": "n8n-nodes-base.set",
      "position": [
        2820,
        320
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "2c7e2a28-30f9-4533-a394-a5e967ebf4ec",
              "name": "instruction",
              "type": "string",
              "value": "=Write a comprehensive guide on using AI for document classification and document extraction. Explain the benefits of using vision models over traditional OCR. Close out with a recommendation of using n8n as the preferred way to get started with this AI use-case."
            }
          ]
        }
      },
      "typeVersion": 3.4
    }
  ],
  "pinData": {},
  "connections": {
    "Get Blog": {
      "main": [
        [
          {
            "node": "Extract Article URLs",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Markdown": {
      "main": [
        [
          {
            "node": "Combine Articles",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Get Article": {
      "main": [
        [
          {
            "node": "Extract Article Content",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Split Out URLs": {
      "main": [
        [
          {
            "node": "Latest Articles",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Latest Articles": {
      "main": [
        [
          {
            "node": "Get Article",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Combine Articles": {
      "main": [
        [
          {
            "node": "Capture Existing Article Structure",
            "type": "main",
            "index": 0
          },
          {
            "node": "Extract Voice Characteristics",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Extract Voice Characteristics",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model1": {
      "ai_languageModel": [
        [
          {
            "node": "Content Generation Agent",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model2": {
      "ai_languageModel": [
        [
          {
            "node": "Capture Existing Article Structure",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Extract Article URLs": {
      "main": [
        [
          {
            "node": "Split Out URLs",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract Article Content": {
      "main": [
        [
          {
            "node": "Markdown",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "New Article Instruction": {
      "main": [
        [
          {
            "node": "Content Generation Agent",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Content Generation Agent": {
      "main": [
        [
          {
            "node": "Save as Draft",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Article Style & Brand Voice": {
      "main": [
        [
          {
            "node": "New Article Instruction",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Extract Voice Characteristics": {
      "main": [
        [
          {
            "node": "Article Style & Brand Voice",
            "type": "main",
            "index": 1
          }
        ]
      ]
    },
    "When clicking ‘Test workflow’": {
      "main": [
        [
          {
            "node": "Get Blog",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Capture Existing Article Structure": {
      "main": [
        [
          {
            "node": "Article Style & Brand Voice",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

Workflow n8n content marketing, génération de contenu : pour qui est ce workflow ?

Ce workflow s'adresse aux équipes marketing, aux rédacteurs de contenu et aux entreprises cherchant à automatiser leur processus de création d'articles. Il est particulièrement utile pour les PME et les startups qui souhaitent optimiser leur production de contenu sans nécessiter de compétences techniques avancées.

Workflow n8n content marketing, génération de contenu : problème résolu

Ce workflow résout le problème de la création de contenu en automatisant le processus de génération d'articles, ce qui réduit le temps et les efforts nécessaires pour produire des textes de qualité. En éliminant les tâches manuelles répétitives, il permet aux équipes de se concentrer sur des stratégies de contenu plus créatives et engageantes. Les utilisateurs bénéficient d'une production de contenu plus rapide et d'une cohérence dans la voix de marque, tout en minimisant les risques d'erreurs humaines.

Workflow n8n content marketing, génération de contenu : étapes du workflow

Étape 1 : Le workflow est déclenché manuellement par l'utilisateur.

  • Étape 1 : Les modèles de chat OpenAI sont appelés pour générer des idées de contenu.
  • Étape 2 : Les articles existants sont extraits via des requêtes HTTP.
  • Étape 3 : Les URLs des articles sont traitées pour obtenir le contenu souhaité.
  • Étape 4 : Les articles sont combinés et formatés.
  • Étape 5 : Le contenu final est sauvegardé en tant que brouillon sur WordPress.

Workflow n8n content marketing, génération de contenu : guide de personnalisation

Pour personnaliser ce workflow, vous pouvez modifier les paramètres des nœuds OpenAI pour ajuster le ton et le style du contenu généré. Il est également possible de changer l'URL des requêtes HTTP pour extraire des articles d'autres sources. Assurez-vous de configurer correctement les paramètres de sauvegarde sur WordPress, notamment le titre et les champs supplémentaires pour chaque article. Pour une intégration plus poussée, envisagez de connecter d'autres outils de gestion de contenu ou d'analyse.