Workflow n8n

Automatisation Google Drive avec n8n : gestion de documents simplifiée

Ce workflow n8n a pour objectif de faciliter la gestion de documents sur Google Drive en intégrant des fonctionnalités d'intelligence artificielle. Dans un contexte où les entreprises doivent gérer un volume croissant de données, ce workflow permet d'automatiser le processus de chargement, de récupération et de mise à jour des documents. Par exemple, il peut être utilisé par des équipes de contenu ou des gestionnaires de projet pour organiser efficacement leurs fichiers tout en intégrant des réponses générées par un modèle de chat OpenAI.

  • Étape 1 : Le déclencheur 'When chat message received' active le workflow lorsqu'un message est reçu.
  • Étape 2 : Les documents sont chargés depuis Google Drive grâce au noeud 'Google Drive'.
  • Étape 3 : Les données sont ensuite traitées par le 'Default Data Loader' pour les préparer à l'analyse.
  • Étape 4 : Les réponses sont générées par le modèle de chat OpenAI, qui utilise les données récupérées pour fournir des informations pertinentes.
  • Étape 5 : Les résultats sont ensuite insérés ou mis à jour dans une base de données via les noeuds 'Insert Documents' et 'Update Documents'. Ce workflow offre une valeur ajoutée significative en réduisant le temps consacré à la gestion manuelle des documents et en permettant une interaction plus fluide avec les données.
Tags clés :automatisationGoogle Driven8ngestion de documentsintelligence artificielle
Catégorie: Webhook · Tags: automatisation, Google Drive, n8n, gestion de documents, intelligence artificielle0

Workflow n8n Google Drive, gestion de documents, intelligence artificielle : vue d'ensemble

Schéma des nœuds et connexions de ce workflow n8n, généré à partir du JSON n8n.

Workflow n8n Google Drive, gestion de documents, intelligence artificielle : détail des nœuds

  • Google Drive

    Ce noeud interagit avec Google Drive pour effectuer des opérations sur un fichier spécifié.

  • Default Data Loader

    Ce noeud charge des données par défaut à partir d'une source spécifiée.

  • Sticky Note

    Ce noeud crée une note autocollante avec un contenu et des dimensions définis.

  • Sticky Note1

    Ce noeud crée une note autocollante colorée avec un contenu et des dimensions spécifiées.

  • Sticky Note2

    Ce noeud génère une note autocollante colorée avec un contenu et des dimensions données.

  • Sticky Note3

    Ce noeud crée une note autocollante colorée avec un contenu et des dimensions définies.

  • Question and Answer Chain

    Ce noeud exécute une chaîne de questions et réponses pour traiter des requêtes.

  • OpenAI Chat Model

    Ce noeud utilise le modèle de chat OpenAI pour générer des réponses basées sur des options fournies.

  • Vector Store Retriever

    Ce noeud récupère des données à partir d'un magasin vectoriel en fonction d'un nombre spécifié de résultats.

  • Recursive Character Text Splitter1

    Ce noeud divise du texte en segments en utilisant une méthode de séparation récursive.

  • Customize Response

    Ce noeud personnalise la réponse en assignant des valeurs à des options spécifiées.

  • When chat message received

    Ce noeud déclenche un événement lorsque un message de chat est reçu.

  • Retrieve by Query

    Ce noeud récupère des données d'une table spécifiée en fonction de requêtes définies.

  • Embeddings OpenAI Retrieval

    Ce noeud génère des embeddings à l'aide du modèle OpenAI pour la récupération de données.

  • Embeddings OpenAI Insertion

    Ce noeud insère des embeddings dans un magasin en utilisant un modèle OpenAI spécifié.

  • Placeholder (File/Content to Upsert)

    Ce noeud sert de placeholder pour le fichier ou le contenu à insérer ou mettre à jour.

  • Embeddings OpenAI Upserting

    Ce noeud met à jour les embeddings dans un magasin en utilisant un modèle OpenAI.

  • Insert Documents

    Ce noeud insère des documents dans une table spécifiée d'un magasin vectoriel.

  • Retrieve Rows from Table

    Ce noeud récupère des lignes d'une table spécifiée dans une base de données Supabase.

  • Sticky Note4

    Ce noeud crée une note autocollante colorée avec un contenu et des dimensions définies.

  • Update Documents

    Ce noeud met à jour des documents dans une table spécifiée d'un magasin vectoriel.

Inscris-toi pour voir l'intégralité du workflow

Inscription gratuite

S'inscrire gratuitementBesoin d'aide ?
{
  "meta": {
    "instanceId": "1a23006df50de49624f69e85993be557d137b6efe723a867a7d68a84e0b32704"
  },
  "nodes": [
    {
      "id": "54065cc9-047c-4741-95f6-cec3e352abd7",
      "name": "Google Drive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        2700,
        -1840
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "url",
          "value": "https://drive.google.com/file/d/xxxxxxxxxxxxxxx/view"
        },
        "options": {},
        "operation": "download"
      },
      "typeVersion": 3
    },
    {
      "id": "62af57f5-a001-4174-bece-260a1fc595e8",
      "name": "Default Data Loader",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        3120,
        -1620
      ],
      "parameters": {
        "loader": "epubLoader",
        "options": {},
        "dataType": "binary"
      },
      "typeVersion": 1
    },
    {
      "id": "ce3d9c7c-6ce9-421a-b4d0-4235217cf8e6",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2620,
        -2000
      ],
      "parameters": {
        "width": 749.1276349295781,
        "height": 820.5109034066329,
        "content": "# INSERTING\n\n- it's important to use the same embedding model when for any interaction with your vector database (inserting, upserting and retrieval)"
      },
      "typeVersion": 1
    },
    {
      "id": "81cb3d3e-70af-46c8-bc18-3d076a222d0b",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1720,
        -1160
      ],
      "parameters": {
        "color": 3,
        "width": 873.9739981925188,
        "height": 534.0012007720542,
        "content": "# UPSERTING\n"
      },
      "typeVersion": 1
    },
    {
      "id": "60ebdb71-c7e0-429b-9394-b680cc000951",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1720,
        -2000
      ],
      "parameters": {
        "color": 4,
        "width": 876.5116990000852,
        "height": 821.787041589866,
        "content": "# PREPARATION (in Supabase)\n\n- your database needs the extension 'pgvector' enabled -> select Database > Extension > Search for 'vector'\n- make sure you have a table that has the following columns (if not, use the query below in the Supabase SQL Editor)\n\n```\nALTER TABLE \"YOUR TABLE NAME\"\nADD COLUMN embedding VECTOR(1536), // check which number of dimensions you need (depends on the embed model)\nADD COLUMN metadata JSONB,\nADD COLUMN content TEXT;\n```\n\n- make sure you have the right policies set -> select Authentication > Policies\n- make sure you have the custom function `match_documents` set up in Supabase -> This is needed for the Vector Store Node (as query name) \n(if not, use the query below in the Supabase SQL Editor to create that function)\n- make sure you check the size of the AI model as it should be the same vector size for the table \n(e.g. OpenAI's Text-Embedding-3-Small uses 1536)\n\n```\nCREATE OR REPLACE FUNCTION public.match_documents(\n filter JSONB,\n match_count INT,\n query_embedding VECTOR(1536) // should match same dimensions as from insertion\n)\nRETURNS TABLE (\n id BIGINT,\n content TEXT,\n metadata JSONB,\n embedding VECTOR(1536), // should match same dimensions as from insertion\n similarity FLOAT\n)\nLANGUAGE plpgsql AS $$\nBEGIN\n RETURN QUERY\n SELECT\n v.id,\n v.content,\n v.metadata,\n v.embedding,\n 1 - (v.embedding <=> match_documents.query_embedding) AS similarity\n FROM \"YOUR TABLE NAME\" v\n WHERE v.metadata @> filter\n ORDER BY v.embedding <=> match_documents.query_embedding\n LIMIT match_count;\nEND;\n$$\n;\n```\n"
      },
      "typeVersion": 1
    },
    {
      "id": "ae95b0c3-b8b3-44eb-8070-b1bc6cac5cd2",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        3400,
        -2000
      ],
      "parameters": {
        "color": 5,
        "width": 810.9488123113013,
        "height": 821.9537074055816,
        "content": "# RETRIEVAL"
      },
      "typeVersion": 1
    },
    {
      "id": "58168721-cbd7-498c-9d16-41b4d5c6a68f",
      "name": "Question and Answer Chain",
      "type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
      "position": [
        3680,
        -1860
      ],
      "parameters": {},
      "typeVersion": 1.3
    },
    {
      "id": "ddf1228f-f051-445b-8a42-54c2510a0b2e",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        3600,
        -1680
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "734a2c48-b445-4e62-99b7-dc1dcd921c52",
      "name": "Vector Store Retriever",
      "type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
      "position": [
        3760,
        -1680
      ],
      "parameters": {
        "topK": 10
      },
      "typeVersion": 1
    },
    {
      "id": "43f761b7-f4da-4b29-8099-9b2c15f79fe9",
      "name": "Recursive Character Text Splitter1",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        3120,
        -1460
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "de0d2666-88e4-4a4d-ba46-cf789b9cba85",
      "name": "Customize Response",
      "type": "n8n-nodes-base.set",
      "notes": "output || text",
      "position": [
        4020,
        -1860
      ],
      "parameters": {
        "options": {},
        "assignments": {
          "assignments": [
            {
              "id": "440fc115-ccae-4e30-85a5-501d0617b2cf",
              "name": "output",
              "type": "string",
              "value": "={{ $json.response.text }}"
            }
          ]
        }
      },
      "notesInFlow": true,
      "typeVersion": 3.4
    },
    {
      "id": "a396671f-a217-4f05-b969-cb64f10e4b01",
      "name": "When chat message received",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        3480,
        -1860
      ],
      "webhookId": "d7431c58-89aa-4d70-b5bd-044be981b3a9",
      "parameters": {
        "public": true,
        "options": {
          "responseMode": "lastNode"
        },
        "initialMessages": "=Hi there! 🙏\n\nYou can ask me anything about Venerable Geshe Kelsang Gyatso's Book - 'How To Transform Your Life'\n\nWhat would you like to know? "
      },
      "typeVersion": 1.1
    },
    {
      "id": "6312f6bc-c69c-4d4f-8838-8a9d0d22ed55",
      "name": "Retrieve by Query",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
      "position": [
        3700,
        -1520
      ],
      "parameters": {
        "options": {
          "queryName": "match_documents"
        },
        "tableName": {
          "__rl": true,
          "mode": "list",
          "value": "Kadampa",
          "cachedResultName": "Kadampa"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "ba6b87b9-e96d-47a3-83f8-169d7172325a",
      "name": "Embeddings OpenAI Retrieval",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        3700,
        -1360
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "bcd1b31f-c60b-4c40-b039-d47dadc86b23",
      "name": "Embeddings OpenAI Insertion",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        2920,
        -1620
      ],
      "parameters": {
        "model": "text-embedding-3-small",
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "dfd7f734-eb00-4af3-9179-724503422fe4",
      "name": "Placeholder (File/Content to Upsert)",
      "type": "n8n-nodes-base.set",
      "position": [
        1900,
        -1000
      ],
      "parameters": {
        "mode": "raw",
        "options": {},
        "jsonOutput": "={\n \"Date\": \"{{ $now.format('dd MMM yyyy') }}\",\n \"Time\": \"{{ $now.format('HH:mm ZZZZ z') }}\"\n}\n"
      },
      "typeVersion": 3.4
    },
    {
      "id": "c54c9458-9b8a-4ef1-a6db-5265729be19d",
      "name": "Embeddings OpenAI Upserting",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        2120,
        -840
      ],
      "parameters": {
        "model": "text-embedding-3-small",
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "30c18e9e-d047-40d3-8324-f5d0e7892db6",
      "name": "Insert Documents",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
      "position": [
        2920,
        -1840
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "tableName": {
          "__rl": true,
          "mode": "list",
          "value": "Kadampa",
          "cachedResultName": "Kadampa"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "3c0ed0ee-9134-4b4e-bcfd-632dd67a57da",
      "name": "Retrieve Rows from Table",
      "type": "n8n-nodes-base.supabase",
      "position": [
        3960,
        -1380
      ],
      "parameters": {
        "tableId": "n8n",
        "operation": "getAll",
        "returnAll": true
      },
      "typeVersion": 1
    },
    {
      "id": "53aca1b4-31e8-4699-b158-673623bc9b95",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        2620,
        -1160
      ],
      "parameters": {
        "color": 6,
        "width": 1587.0771183771394,
        "height": 537.3056597675153,
        "content": "# DELETION\n\nAt the moment n8n does not have a built-in Supabase Node to delete records in a Vector Database. For this you would typically use the HTTP Request node to make an authorized API call to Supabase. \n\n## HTTP Request Node\n\nUse this node to send a DELETE request to your Supabase instance.\n\n- Supabase API Endpoint: Use the appropriate URL for your Supabase project. The endpoint will typically look like this: [https://<your-supabase-ref>.supabase.co/rest/v1/<your-vector-table>](https://supabase.com/docs/guides/api). Replace `<your-supabase-ref>` and `<your-vector-table>` with your details.\n### HEADERS:\n- apikey: Your Supabase API key.\n- Authorization: Bearer token with your Supabase JWT.\n- Query Parameters: Use query parameters to specify which record(s) to delete. For example, `?id=eq.<your-record-id>` where `<your-record-id>` is the specific record ID you want to delete \n(You can also reference back to the **Retrieve Rows From Table** Node to get the ID dynamically)\n\nEnsure you have the necessary permissions set up in Supabase to delete records through the API.\n\nPlease refer to the official n8n documentation for more detailed information on using the [HTTP Request Node](https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.httprequest/).\n\n_Note:_ Deleting records is a sensitive operation, so make sure that your permissions are correctly configured and that you are targeting the correct records to avoid unwanted data loss."
      },
      "typeVersion": 1
    },
    {
      "id": "4ffaccdb-9e0f-464d-9284-7771f6599fd8",
      "name": "Update Documents",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
      "position": [
        2100,
        -1000
      ],
      "parameters": {
        "id": "1",
        "mode": "update",
        "options": {
          "queryName": "match_documents"
        },
        "tableName": {
          "__rl": true,
          "mode": "list",
          "value": "n8n",
          "cachedResultName": "n8n"
        }
      },
      "typeVersion": 1
    }
  ],
  "pinData": {},
  "connections": {
    "Google Drive": {
      "main": [
        [
          {
            "node": "Insert Documents",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Question and Answer Chain",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Retrieve by Query": {
      "ai_vectorStore": [
        [
          {
            "node": "Vector Store Retriever",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "Default Data Loader": {
      "ai_document": [
        [
          {
            "node": "Insert Documents",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Vector Store Retriever": {
      "ai_retriever": [
        [
          {
            "node": "Question and Answer Chain",
            "type": "ai_retriever",
            "index": 0
          }
        ]
      ]
    },
    "Question and Answer Chain": {
      "main": [
        [
          {
            "node": "Customize Response",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "When chat message received": {
      "main": [
        [
          {
            "node": "Question and Answer Chain",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI Insertion": {
      "ai_embedding": [
        [
          {
            "node": "Insert Documents",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI Retrieval": {
      "ai_embedding": [
        [
          {
            "node": "Retrieve by Query",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI Upserting": {
      "ai_embedding": [
        [
          {
            "node": "Update Documents",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Recursive Character Text Splitter1": {
      "ai_textSplitter": [
        [
          {
            "node": "Default Data Loader",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "Placeholder (File/Content to Upsert)": {
      "main": [
        [
          {
            "node": "Update Documents",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

Workflow n8n Google Drive, gestion de documents, intelligence artificielle : pour qui est ce workflow ?

Ce workflow s'adresse principalement aux équipes de gestion de projet, aux responsables de contenu et aux entreprises qui utilisent Google Drive pour stocker et gérer leurs documents. Un niveau technique intermédiaire est recommandé pour personnaliser et adapter le workflow à des besoins spécifiques.

Workflow n8n Google Drive, gestion de documents, intelligence artificielle : problème résolu

Ce workflow résout le problème de la gestion inefficace des documents sur Google Drive, qui peut entraîner des pertes de temps et des erreurs. En automatisant le chargement, la récupération et la mise à jour des fichiers, les utilisateurs peuvent se concentrer sur des tâches à plus forte valeur ajoutée. De plus, l'intégration d'un modèle de chat OpenAI permet d'obtenir des réponses instantanées et pertinentes, améliorant ainsi la productivité globale.

Workflow n8n Google Drive, gestion de documents, intelligence artificielle : étapes du workflow

Étape 1 : Le workflow est déclenché par la réception d'un message de chat.

  • Étape 1 : Les documents sont chargés depuis Google Drive.
  • Étape 2 : Les données sont préparées à l'aide du 'Default Data Loader'.
  • Étape 3 : Les réponses sont générées par le modèle de chat OpenAI.
  • Étape 4 : Les résultats sont insérés ou mis à jour dans la base de données.

Workflow n8n Google Drive, gestion de documents, intelligence artificielle : guide de personnalisation

Pour personnaliser ce workflow, commencez par modifier le noeud 'Google Drive' pour spécifier le dossier ou les fichiers à charger. Vous pouvez également ajuster les paramètres du modèle OpenAI pour affiner les réponses générées. Si vous souhaitez intégrer d'autres outils, envisagez de connecter des API supplémentaires via des noeuds HTTP. Enfin, assurez-vous de sécuriser le flux en configurant les autorisations d'accès appropriées pour Google Drive et les autres services utilisés.